2,134 research outputs found

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Rank, select and access in grammar-compressed strings

    Full text link
    Given a string SS of length NN on a fixed alphabet of σ\sigma symbols, a grammar compressor produces a context-free grammar GG of size nn that generates SS and only SS. In this paper we describe data structures to support the following operations on a grammar-compressed string: \mbox{rank}_c(S,i) (return the number of occurrences of symbol cc before position ii in SS); \mbox{select}_c(S,i) (return the position of the iith occurrence of cc in SS); and \mbox{access}(S,i,j) (return substring S[i,j]S[i,j]). For rank and select we describe data structures of size O(nσlogN)O(n\sigma\log N) bits that support the two operations in O(logN)O(\log N) time. We propose another structure that uses O(nσlog(N/n)(logN)1+ϵ)O(n\sigma\log (N/n)(\log N)^{1+\epsilon}) bits and that supports the two queries in O(logN/loglogN)O(\log N/\log\log N), where ϵ>0\epsilon>0 is an arbitrary constant. To our knowledge, we are the first to study the asymptotic complexity of rank and select in the grammar-compressed setting, and we provide a hardness result showing that significantly improving the bounds we achieve would imply a major breakthrough on a hard graph-theoretical problem. Our main result for access is a method that requires O(nlogN)O(n\log N) bits of space and O(logN+m/logσN)O(\log N+m/\log_\sigma N) time to extract m=ji+1m=j-i+1 consecutive symbols from SS. Alternatively, we can achieve O(logN/loglogN+m/logσN)O(\log N/\log\log N+m/\log_\sigma N) query time using O(nlog(N/n)(logN)1+ϵ)O(n\log (N/n)(\log N)^{1+\epsilon}) bits of space. This matches a lower bound stated by Verbin and Yu for strings where NN is polynomially related to nn.Comment: 16 page

    DiffProtect: Generate Adversarial Examples with Diffusion Models for Facial Privacy Protection

    Full text link
    The increasingly pervasive facial recognition (FR) systems raise serious concerns about personal privacy, especially for billions of users who have publicly shared their photos on social media. Several attempts have been made to protect individuals from being identified by unauthorized FR systems utilizing adversarial attacks to generate encrypted face images. However, existing methods suffer from poor visual quality or low attack success rates, which limit their utility. Recently, diffusion models have achieved tremendous success in image generation. In this work, we ask: can diffusion models be used to generate adversarial examples to improve both visual quality and attack performance? We propose DiffProtect, which utilizes a diffusion autoencoder to generate semantically meaningful perturbations on FR systems. Extensive experiments demonstrate that DiffProtect produces more natural-looking encrypted images than state-of-the-art methods while achieving significantly higher attack success rates, e.g., 24.5% and 25.1% absolute improvements on the CelebA-HQ and FFHQ datasets.Comment: Code will be available at https://github.com/joellliu/DiffProtect

    Accelerating dynamic programming

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 129-136).Dynamic Programming (DP) is a fundamental problem-solving technique that has been widely used for solving a broad range of search and optimization problems. While DP can be invoked when more specialized methods fail, this generality often incurs a cost in efficiency. We explore a unifying toolkit for speeding up DP, and algorithms that use DP as subroutines. Our methods and results can be summarized as follows. - Acceleration via Compression. Compression is traditionally used to efficiently store data. We use compression in order to identify repeats in the table that imply a redundant computation. Utilizing these repeats requires a new DP, and often different DPs for different compression schemes. We present the first provable speedup of the celebrated Viterbi algorithm (1967) that is used for the decoding and training of Hidden Markov Models (HMMs). Our speedup relies on the compression of the HMM's observable sequence. - Totally Monotone Matrices. It is well known that a wide variety of DPs can be reduced to the problem of finding row minima in totally monotone matrices. We introduce this scheme in the context of planar graph problems. In particular, we show that planar graph problems such as shortest paths, feasible flow, bipartite perfect matching, and replacement paths can be accelerated by DPs that exploit a total-monotonicity property of the shortest paths. - Combining Compression and Total Monotonicity. We introduce a method for accelerating string edit distance computation by combining compression and totally monotone matrices.(cont.) In the heart of this method are algorithms for computing the edit distance between two straight-line programs. These enable us to exploits the compressibility of strings, even if each string is compressed using a different compression scheme. - Partial Tables. In typical DP settings, a table is filled in its entirety, where each cell corresponds to some subproblem. In some cases, by changing the DP, it is possible to compute asymptotically less cells of the table. We show that [theta](n³) subproblems are both necessary and sufficient for computing the similarity between two trees. This improves all known solutions and brings the idea of partial tables to its full extent. - Fractional Subproblems. In some DPs, the solution to a subproblem is a data structure rather than a single value. The entire data structure of a subproblem is then processed and used to construct the data structure of larger subproblems. We suggest a method for reusing parts of a subproblem's data structure. In some cases, such fractional parts remain unchanged when constructing the data structure of larger subproblems. In these cases, it is possible to copy this part of the data structure to the larger subproblem using only a constant number of pointer changes. We show how this idea can be used for finding the optimal tree searching strategy in linear time. This is a generalization of the well known binary search technique from arrays to trees.by Oren Weimann.Ph.D

    Graph Compression for Adjacency-Matrix Multiplication

    Get PDF
    19 April 2022 A Correction to this paper has been published: https://doi.org/10.1007/s42979-022-01141-w[Abstract] Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper, we show that some well-known webgraph and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. We focus on the compressed representations of (a) Boldi and Vigna and (b) Hernández and Navarro, and show that the product computation can be conducted in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original.We thank Cecilia Hernández for providing us with her software extracting the bicliques, and a helpful description in how to run it. This research has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie [grant agreement No 690941], namely while the first author was visiting the University of Chile, and while the second author was affiliated with the University of Helsinki and visiting the University of A Coruña. The first author was funded by Fundação para a Ciência e a Tecnologia (FCT) [grant number UIDB/50021/2020 and PTDC/CCI-BIO/29676/2017]; the second author was funded by the Academy of Finland [Grant number 268324], Fondecyt [Grant number 1171058] and NSERC [Grant number RGPIN-07185-2020]; the third author was funded by JSPS KAKENHI [grant numbers JP21K17701 and JP21H05847]; the fourth author was funded by AEI and Ministerio de Ciencia e Innovación (PGE and FEDER) [grant number PID2019-105221RB-C41] and Xunta de Galicia (co-funded with FEDER) [Grant numbers ED431C 2021/53 and ED431G 2019/01]; and the fifth author was funded by ANID – Millennium Science Initiative Program – Code ICN17_002Xunta de Galicia; ED431C 2021/53Xunta de Galicia; ED431G 2019/0
    corecore