16,548 research outputs found

    Hybrid finite difference/finite element immersed boundary method

    Get PDF
    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach employs a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach

    Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data

    Get PDF
    We give an introduction to discrete functional analysis techniques for stationary and transient diffusion equations. We show how these techniques are used to establish the convergence of various numerical schemes without assuming non-physical regularity on the data. For simplicity of exposure, we mostly consider linear elliptic equations, and we briefly explain how these techniques can be adapted and extended to non-linear time-dependent meaningful models (Navier--Stokes equations, flows in porous media, etc.). These convergence techniques rely on discrete Sobolev norms and the translation to the discrete setting of functional analysis results
    • …
    corecore