19 research outputs found

    Unfolding Orthogonal Terrains

    Get PDF
    It is shown that every orthogonal terrain, i.e., an orthogonal (right-angled) polyhedron based on a rectangle that meets every vertical line in a segment, has a grid unfolding: its surface may be unfolded to a single non-overlapping piece by cutting along grid edges defined by coordinate planes through every vertex.Comment: 7 pages, 7 figures, 5 references. First revision adds Figure 7, and improves Figure 6. Second revision further improves Figure 7, and adds one clarifying sentence. Third corrects label in Figure 7. Fourth revision corrects a sentence in the conclusion about the class of shapes now known to be grid-unfoldabl

    Vertex-Unfoldings of Simplicial Polyhedra

    Get PDF
    We present two algorithms for unfolding the surface of any polyhedron, all of whose faces are triangles, to a nonoverlapping, connected planar layout. The surface is cut only along polyhedron edges. The layout is connected, but it may have a disconnected interior: the triangles are connected at vertices, but not necessarily joined along edges.Comment: 10 pages; 7 figures; 8 reference

    Enumerating Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite.Comment: 12 pages; 10 figures; 10 references. Revision of version in Proceedings of the Japan Conference on Discrete and Computational Geometry, Tokyo, Nov. 2000, pp. 9-12. See also cs.CG/000701

    Unfolding Manhattan Towers

    Get PDF
    We provide an algorithm for unfolding the surface of any orthogonal polyhedron that falls into a particular shape class we call Manhattan Towers, to a nonoverlapping planar orthogonal polygon. The algorithm cuts along edges of a 4x5x1 refinement of the vertex grid.Comment: Full version of abstract that appeared in: Proc. 17th Canad. Conf. Comput. Geom., 2005, pp. 204--20

    Some Polycubes Have No Edge Zipper Unfolding

    Get PDF
    It is unknown whether every polycube (polyhedron constructed by gluing cubes face-to-face) has an edge unfolding, that is, cuts along edges of the cubes that unfolds the polycube to a single nonoverlapping polygon in the plane. Here we construct polycubes that have no *edge zipper unfolding* where the cut edges are further restricted to form a path.Comment: 11 pages, 10 figures, 9 references. Updated to match the version that will appear in the Canad. Conf. Comput. Geom., Aug. 202

    Epsilon-Unfolding Orthogonal Polyhedra

    Get PDF
    An unfolding of a polyhedron is produced by cutting the surface and flattening to a single, connected, planar piece without overlap (except possibly at boundary points). It is a long unsolved problem to determine whether every polyhedron may be unfolded. Here we prove, via an algorithm, that every orthogonal polyhedron (one whose faces meet at right angles) of genus zero may be unfolded. Our cuts are not necessarily along edges of the polyhedron, but they are always parallel to polyhedron edges. For a polyhedron of n vertices, portions of the unfolding will be rectangular strips which, in the worst case, may need to be as thin as epsilon = 1/2^{Omega(n)}.Comment: 23 pages, 20 figures, 7 references. Revised version improves language and figures, updates references, and sharpens the conclusio

    Unfolding Orthogrids with Constant Refinement

    Full text link
    We define a new class of orthogonal polyhedra, called orthogrids, that can be unfolded without overlap with constant refinement of the gridded surface.Comment: 19 pages, 12 figure

    An Algorithmic Study of Manufacturing Paperclips and Other Folded Structures

    Get PDF
    We study algorithmic aspects of bending wires and sheet metal into a specified structure. Problems of this type are closely related to the question of deciding whether a simple non-self-intersecting wire structure (a carpenter's ruler) can be straightened, a problem that was open for several years and has only recently been solved in the affirmative. If we impose some of the constraints that are imposed by the manufacturing process, we obtain quite different results. In particular, we study the variant of the carpenter's ruler problem in which there is a restriction that only one joint can be modified at a time. For a linkage that does not self-intersect or self-touch, the recent results of Connelly et al. and Streinu imply that it can always be straightened, modifying one joint at a time. However, we show that for a linkage with even a single vertex degeneracy, it becomes NP-hard to decide if it can be straightened while altering only one joint at a time. If we add the restriction that each joint can be altered at most once, we show that the problem is NP-complete even without vertex degeneracies. In the special case, arising in wire forming manufacturing, that each joint can be altered at most once, and must be done sequentially from one or both ends of the linkage, we give an efficient algorithm to determine if a linkage can be straightened.Comment: 28 pages, 14 figures, Latex, to appear in Computational Geometry - Theory and Application
    corecore