1,217 research outputs found

    On Safe Folding

    Get PDF
    In [3] a general fold operation has been introduced for definite programs wrt computed answer substitution semantics. It differs from the fold operation defined by Tamaki and Sato in [26,25] because its application does not depend on the transformation history. This paper extends the results in [3] by giving a more powerful sufficient condition for the preservation of computed answer substitutions. Such a condition is meant to deal with the critical case when the atom introduced by folding depends on the clause to which the fold applies. The condition compares the dependency degree between the fonding atom and the folded clause, with the semantic delay between the folding atom and the ones to be folded. The result is also extended to a more general replacement operation, by showing that it can be decomposed into a sequence of definition, general folding and unfolding operations

    Transforming acyclic programs

    Get PDF
    An unfold/fold transformation system is a source-to-source rewriting methodology devised to improve the efficiency of a program. Any such transformation should preserve the main properties of the initial program: among them, termination. In the field of logic programming, the class of acyclic programs plays an important role in this respect, since it is closely related to the one of terminating programs. The two classes coincide when negation is not allowed in the bodies of the clauses. We prove that the Unfold/Fold transformation system defined by Tamaki and Sato preserves the acyclicity of the initial program. From this result, it follows that when the transformation is applied to an acyclic program, then the finite failure set for definite programs is preserved; in the case of normal programs, all major declarative and operational semantics are preserved as well. These results cannot be extended to the class of left-terminating programs without modifying the definition of the transformation

    Transforming Normal Programs by Replacement

    Get PDF
    The replacement transformation operation, already defined in [28], is studied wrt normal programs. We give applicability conditions able to ensure the correctness of the operation wrt Fitting's and Kunen's semantics. We show how replacement can mimic other transformation operations such as thinning, fattening and folding, thus producing applicability conditions for them too. Furthermore we characterize a transformation sequence for which the preservation of Fitting's and Kunen's semantics is ensured

    More on Unfold/Fold Transformations of Normal Programs: Preservation of Fitting's Semantics

    Get PDF
    The unfold/fold transformation system defined by Tamaki and Sato was meant for definite programs. It transforms a program into an equivalent one in the sense of both the least Herbrand model semantics and the Computed Answer Substitution semantics. Seki extended the method to normal programs and specialized it in order to preserve also the finite failure set. The resulting system is correct wrt nearly all the declarative semantics for normal programs. An exception is Fitting's model semantics. In this paper we consider a slight variation of Seki's method and we study its correctness wrt Fitting's semantics. We define an applicability condition for the fold operation and we show that it ensures the preservation of the considered semantics through the transformation

    Program Transformation for Development, Verification, and Synthesis of Software

    Get PDF
    In this paper we briefly describe the use of the program transformation methodology for the development of correct and efficient programs. We will consider, in particular, the case of the transformation and the development of constraint logic programs

    Transformations of Logic Programs with Goals as Arguments

    Full text link
    We consider a simple extension of logic programming where variables may range over goals and goals may be arguments of predicates. In this language we can write logic programs which use goals as data. We give practical evidence that, by exploiting this capability when transforming programs, we can improve program efficiency. We propose a set of program transformation rules which extend the familiar unfolding and folding rules and allow us to manipulate clauses with goals which occur as arguments of predicates. In order to prove the correctness of these transformation rules, we formally define the operational semantics of our extended logic programming language. This semantics is a simple variant of LD-resolution. When suitable conditions are satisfied this semantics agrees with LD-resolution and, thus, the programs written in our extended language can be run by ordinary Prolog systems. Our transformation rules are shown to preserve the operational semantics and termination.Comment: 51 pages. Full version of a paper that will appear in Theory and Practice of Logic Programming, Cambridge University Press, U

    Simultaneous Replacement in Normal Programs

    Get PDF
    The simultaneous replacement transformation operation is here defined and studied w.r.t. normal programs. We give applicability conditions able to ensure the correctness of the operation w.r.t. the set of logical consequences of the completed database. We consider separately the cases in which the underlying language is infinite and finite; in this latter case we also distinguish according to the kind of domain closure axioms adopted. As corollaries we obtain results for Fitting's and Kunen's semantics. We also show how simultaneous replacement can mimic other transformation operations such as thinning, fattening and folding, thus producing applicability conditions for them too
    corecore