3 research outputs found

    Undirected Graphs of Entanglement Two

    Full text link
    Entanglement is a complexity measure of directed graphs that origins in fixed point theory. This measure has shown its use in designing efficient algorithms to verify logical properties of transition systems. We are interested in the problem of deciding whether a graph has entanglement at most k. As this measure is defined by means of games, game theoretic ideas naturally lead to design polynomial algorithms that, for fixed k, decide the problem. Known characterizations of directed graphs of entanglement at most 1 lead, for k = 1, to design even faster algorithms. In this paper we present an explicit characterization of undirected graphs of entanglement at most 2. With such a characterization at hand, we devise a linear time algorithm to decide whether an undirected graph has this property

    The Variable Hierarchy for the Games mu-Calculus

    Full text link
    Parity games are combinatorial representations of closed Boolean mu-terms. By adding to them draw positions, they have been organized by Arnold and one of the authors into a mu-calculus. As done by Berwanger et al. for the propositional modal mu-calculus, it is possible to classify parity games into levels of a hierarchy according to the number of fixed-point variables. We ask whether this hierarchy collapses w.r.t. the standard interpretation of the games mu-calculus into the class of all complete lattices. We answer this question negatively by providing, for each n >= 1, a parity game Gn with these properties: it unravels to a mu-term built up with n fixed-point variables, it is semantically equivalent to no game with strictly less than n-2 fixed-point variables

    The Variable Hierarchy for the Games mu-Calculus

    Get PDF
    To appear in the journal Annals of Pure and Applied LogicInternational audienceParity games are combinatorial representations of closed Boolean mu-terms. By adding to them draw positions, they have been organized by Arnold and one of the authors into a mu-calculus. As done by Berwanger et al. for the propositional modal mu-calculus, it is possible to classify parity games into levels of a hierarchy according to the number of fixed-point variables. We ask whether this hierarchy collapses w.r.t. the standard interpretation of the games mu-calculus into the class of all complete lattices. We answer this question negatively by providing, for each n >= 1, a parity game Gn with these properties: it unravels to a mu-term built up with n fixed-point variables, it is semantically equivalent to no game with strictly less than n-2 fixed-point variables
    corecore