15 research outputs found

    Visual-Quality-Driven Learning for Underwater Vision Enhancement

    Full text link
    The image processing community has witnessed remarkable advances in enhancing and restoring images. Nevertheless, restoring the visual quality of underwater images remains a great challenge. End-to-end frameworks might fail to enhance the visual quality of underwater images since in several scenarios it is not feasible to provide the ground truth of the scene radiance. In this work, we propose a CNN-based approach that does not require ground truth data since it uses a set of image quality metrics to guide the restoration learning process. The experiments showed that our method improved the visual quality of underwater images preserving their edges and also performed well considering the UCIQE metric.Comment: Accepted for publication and presented in 2018 IEEE International Conference on Image Processing (ICIP

    Fast underwater color correction using integral images

    Get PDF
    Underwater image processing has to face the problem of loss of color and contrast that occurs when images are acquired at a certain depth and range. The longer wavelengths of sunlight such as red or orange are rapidly absorbed by the water body, while the shorter ones have a higher scattering. Thereby, at larger distance, the scene colors appear bluish-greenish, as well as blurry. The loss of color increases not only vertically through the water column, but also horizontally, so that the subjects further away from the camera appear colorless and indistinguishable, suffering from lack of visible details. This paper presents a fast enhancement method for color correction of underwater images. The method is based on the gray-world assumption applied in the Ruderman-opponent color space and is able to cope with non-uniformly illuminated scenes. Integral images are exploited by the proposed method to perform fast color correction, taking into account locally changing luminance and chrominance. Due to the low-complexity cost this method is suitable for real-time applications ensuring realistic colors of the objects, more visible details and enhanced visual quality.Peer Reviewe
    corecore