research

Visual-Quality-Driven Learning for Underwater Vision Enhancement

Abstract

The image processing community has witnessed remarkable advances in enhancing and restoring images. Nevertheless, restoring the visual quality of underwater images remains a great challenge. End-to-end frameworks might fail to enhance the visual quality of underwater images since in several scenarios it is not feasible to provide the ground truth of the scene radiance. In this work, we propose a CNN-based approach that does not require ground truth data since it uses a set of image quality metrics to guide the restoration learning process. The experiments showed that our method improved the visual quality of underwater images preserving their edges and also performed well considering the UCIQE metric.Comment: Accepted for publication and presented in 2018 IEEE International Conference on Image Processing (ICIP

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021