71,628 research outputs found

    The Monkeytyping Solution to the YouTube-8M Video Understanding Challenge

    Get PDF
    This article describes the final solution of team monkeytyping, who finished in second place in the YouTube-8M video understanding challenge. The dataset used in this challenge is a large-scale benchmark for multi-label video classification. We extend the work in [1] and propose several improvements for frame sequence modeling. We propose a network structure called Chaining that can better capture the interactions between labels. Also, we report our approaches in dealing with multi-scale information and attention pooling. In addition, We find that using the output of model ensemble as a side target in training can boost single model performance. We report our experiments in bagging, boosting, cascade, and stacking, and propose a stacking algorithm called attention weighted stacking. Our final submission is an ensemble that consists of 74 sub models, all of which are listed in the appendix.Comment: Submitted to the CVPR 2017 Workshop on YouTube-8M Large-Scale Video Understandin

    Cut-Based Graph Learning Networks to Discover Compositional Structure of Sequential Video Data

    Full text link
    Conventional sequential learning methods such as Recurrent Neural Networks (RNNs) focus on interactions between consecutive inputs, i.e. first-order Markovian dependency. However, most of sequential data, as seen with videos, have complex dependency structures that imply variable-length semantic flows and their compositions, and those are hard to be captured by conventional methods. Here, we propose Cut-Based Graph Learning Networks (CB-GLNs) for learning video data by discovering these complex structures of the video. The CB-GLNs represent video data as a graph, with nodes and edges corresponding to frames of the video and their dependencies respectively. The CB-GLNs find compositional dependencies of the data in multilevel graph forms via a parameterized kernel with graph-cut and a message passing framework. We evaluate the proposed method on the two different tasks for video understanding: Video theme classification (Youtube-8M dataset) and Video Question and Answering (TVQA dataset). The experimental results show that our model efficiently learns the semantic compositional structure of video data. Furthermore, our model achieves the highest performance in comparison to other baseline methods.Comment: 8 pages, 3 figures, Association for the Advancement of Artificial Intelligence (AAAI2020). arXiv admin note: substantial text overlap with arXiv:1907.0170
    corecore