16 research outputs found

    Understanding the characteristics of cellular data traffic

    Full text link

    Classification of AMI residential load profiles in the presence of missing data

    Get PDF
    Domestic energy usage patterns can be reduced to a series of classifications for power system analysis or operational purposes, generalizing household behavior into particular load profiles without noise induced variability. However, with AMI data transmissions over wireless networks becoming more commonplace data losses can inhibit classification negating the benefits to the operation of the power system as a whole. Here, an approach allowing incomplete load profiles to be classified while maintaining less than a 10% classification error with up to 20% of the data missing is presented

    Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment

    Full text link
    Understanding mobile traffic patterns of large scale cellular towers in urban environment is extremely valuable for Internet service providers, mobile users, and government managers of modern metropolis. This paper aims at extracting and modeling the traffic patterns of large scale towers deployed in a metropolitan city. To achieve this goal, we need to address several challenges, including lack of appropriate tools for processing large scale traffic measurement data, unknown traffic patterns, as well as handling complicated factors of urban ecology and human behaviors that affect traffic patterns. Our core contribution is a powerful model which combines three dimensional information (time, locations of towers, and traffic frequency spectrum) to extract and model the traffic patterns of thousands of cellular towers. Our empirical analysis reveals the following important observations. First, only five basic time-domain traffic patterns exist among the 9,600 cellular towers. Second, each of the extracted traffic pattern maps to one type of geographical locations related to urban ecology, including residential area, business district, transport, entertainment, and comprehensive area. Third, our frequency-domain traffic spectrum analysis suggests that the traffic of any tower among the 9,600 can be constructed using a linear combination of four primary components corresponding to human activity behaviors. We believe that the proposed traffic patterns extraction and modeling methodology, combined with the empirical analysis on the mobile traffic, pave the way toward a deep understanding of the traffic patterns of large scale cellular towers in modern metropolis.Comment: To appear at IMC 201

    Modeling mobile cellular networks based on social characteristics

    Full text link
    Social characteristics have become an important aspect of cellular systems, particularly in next generation networks where cells are miniaturised and social effects can have considerable impacts on network operations. Traffic load demonstrates strong spatial and temporal fluctuations caused by users social activities. In this article, we introduce a new modelling method which integrates the social aspects of individual cells in modelling cellular networks. In the new method, entropy based social characteristics and time sequences of traffic fluctuations are defined as key measures, and jointly evaluated. Spectral clustering techniques can be extended and applied to categorise cells based on these key parameters. Based on the social characteristics respectively, we implement multi-dimensional clustering technologies, and categorize the base stations. Experimental studies are carried out to validate our proposed model, and the effectiveness of the model is confirmed through the consistency between measurements and model. In practice, our modelling method can be used for network planning and parameter dimensioning to facilitate cellular network design, deployments and operations

    Exploratory Analysis of a GGSN’s PDP Context Signaling Load

    Get PDF
    corecore