2 research outputs found

    Understanding the Regulation of Predatory and Anti-Prey Behaviours for an Artificial Organism

    Get PDF
    An organism’s behaviour can be categorised as being either predatory or anti-prey. Predatory behaviours are behaviours that try to improve the life of an organism. Anti-prey behaviours are those that attempt to prevent death. Regulation between these two opposing behaviours is necessary to ensure survivability—and gene regulatory networks and metabolic networks are the mechanisms that provide this regulation. We know that such regulatory behaviour is encoded in an organism’s genes. The question is, how is it encoded? The understanding of this encoding can help with the development of an artificial organism, for example an autonomous robotic system; whereby the robot will have the ability to autonomously regulate the switching between the opposing behaviours using this encoded mechanism, in order to ensure its sustainable and continuous system operations. This paper aims to look into the properties of an artificial bio-chemical network consisting of a genetic regulatory network and a metabolic network that can provide these capabilities

    Investigating the properties of bio-chemical networks of artificial organisms with opposing behaviours

    Get PDF
    Organisms, be it singled-celled organisms or multi-cellular organisms, are constantly faced with opposing objectives requiring different sets of behaviours. These behaviours can be classified into two, predatory behaviours or anti-prey behaviours, with one set of behaviours causing an opposite effect to the other. A healthy organism aims to achieve its equilibrium state or to be in homeostasis. Homeostasis is achieved when a balance between the two opposing behaviours is created and maintained. This raises some questions: is there an innate mechanism that encodes for these categories of behaviours? Is there also an innate mechanism(s) that resolves conflicts and allows switching between these two opposing behaviours? If we consider artificial organisms as single-celled organisms, how do the organisms’ gene regulatory network, metabolic network and/or signalling network (their biochemical networks) maintain homeostasis of the organisms? This paper investigates the properties of the networks of best evolved artificial organisms, in order to help answer these questions, and guide the evolutionary development of controllers for artificial systems
    corecore