10,881 research outputs found

    Self-organising agent communities for autonomic computing

    No full text
    Efficient resource management is one of key problems associated with large-scale distributed computational systems. Taking into account their increasing complexity, inherent distribution and dynamism, such systems are required to adjust and adapt resources market that is offered by them at run-time and with minimal cost. However, as observed by major IT vendors such as IBM, SUN or HP, the very nature of such systems prevents any reliable and efficient control over their functioning through human administration.For this reason, autonomic system architectures capable of regulating their own functioning are suggested as the alternative solution to looming software complexity crisis. Here, large-scale infrastructures are assumed to comprise myriads of autonomic elements, each acting, learning or evolving separately in response to interactions in their local environments. The self-regulation of the whole system, in turn, becomes a product of local adaptations and interactions between system elements.Although many researchers suggest the application of multi-agent systems that are suitable for realising this vision, not much is known about regulatory mechanisms that are capable to achieve efficient organisation within a system comprising a population of locally and autonomously interacting agents. To address this problem, the aim of the work presented in this thesis was to understand how global system control can emerge out of such local interactions of individual system elements and to develop decentralised decision control mechanisms that are capable to employ this bottom-up self-organisation in order to preserve efficient resource management in dynamic and unpredictable system functioning conditions. To do so, we have identified the study of complex natural systems and their self-organising properties as an area of research that may deliver novel control solutions within the context of autonomic computing.In such a setting, a central challenge for the construction of distributed computational systems was to develop an engineering methodology that can exploit self-organising principles observed in natural systems. This, in particular, required to identify conditions and local mechanisms that give rise to useful self-organisation of interacting elements into structures that support required system functionality. To achieve this, we proposed an autonomic system model exploiting self-organising algorithms and its thermodynamic interpretation, providing a general understanding of self-organising processes that need to be taken into account within artificial systems exploiting self-organisation.<br/

    Intelligent Agents for Disaster Management

    No full text
    ALADDIN [1] is a multi-disciplinary project that is developing novel techniques, architectures, and mechanisms for multi-agent systems in uncertain and dynamic environments. The application focus of the project is disaster management. Research within a number of themes is being pursued and this is considering different aspects of the interaction between autonomous agents and the decentralised system architectures that support those interactions. The aim of the research is to contribute to building more robust multi-agent systems for future applications in disaster management and other similar domains

    Coordination in software agent systems

    Get PDF

    Proof-of-Concept Application - Annual Report Year 1

    Get PDF
    In this document the Cat-COVITE Application for use in the CATNETS Project is introduced and motivated. Furthermore an introduction to the catallactic middleware and Web Services Agreement (WS-Agreement) concepts is given as a basis for the future work. Requirements for the application of Cat-COVITE with in catallactic systems are analysed. Finally the integration of the Cat-COVITE application and the catallactic middleware is described. --Grid Computing

    Predicting business/ICT alignment with AntMiner+.

    Get PDF
    In this paper we report on the results of a European survey on business/ICT alignment practices. The goal of this study is to come up with some practical guidelines for managers on how to strive for better alignment of ICT investments with business requirements. Based on Luftman's alignment framework we examine 18 ICT management practices belonging to 6 different competency clusters. We use AntMiner+, a rule induction technique, to create an alignment rule set. The results indicate that B/ICT alignment is a multidimensional goal which can only be obtained through focused investments covering different alignment aspects. The obtained rule set is an interesting mix of both formal engineering and social interaction processes and structures. We discuss the implication of the alignment rules for practitioners.Alignment; Artificial ant systems; Business; Business/ICT alignment; Data; Data mining; Framework; Investment; Investments; Management; Management practices; Managers; Practical guidelines; Processes; Requirements; Rules; Structure; Studies; Systems;

    Robust and cheating-resilient power auctioning on Resource Constrained Smart Micro-Grids

    Get PDF
    The principle of Continuous Double Auctioning (CDA) is known to provide an efficient way of matching supply and demand among distributed selfish participants with limited information. However, the literature indicates that the classic CDA algorithms developed for grid-like applications are centralised and insensitive to the processing resources capacity, which poses a hindrance for their application on resource constrained, smart micro-grids (RCSMG). A RCSMG loosely describes a micro-grid with distributed generators and demand controlled by selfish participants with limited information, power storage capacity and low literacy, communicate over an unreliable infrastructure burdened by limited bandwidth and low computational power of devices. In this thesis, we design and evaluate a CDA algorithm for power allocation in a RCSMG. Specifically, we offer the following contributions towards power auctioning on RCSMGs. First, we extend the original CDA scheme to enable decentralised auctioning. We do this by integrating a token-based, mutual-exclusion (MUTEX) distributive primitive, that ensures the CDA operates at a reasonably efficient time and message complexity of O(N) and O(logN) respectively, per critical section invocation (auction market execution). Our CDA algorithm scales better and avoids the single point of failure problem associated with centralised CDAs (which could be used to adversarially provoke a break-down of the grid marketing mechanism). In addition, the decentralised approach in our algorithm can help eliminate privacy and security concerns associated with centralised CDAs. Second, to handle CDA performance issues due to malfunctioning devices on an unreliable network (such as a lossy network), we extend our proposed CDA scheme to ensure robustness to failure. Using node redundancy, we modify the MUTEX protocol supporting our CDA algorithm to handle fail-stop and some Byzantine type faults of sites. This yields a time complexity of O(N), where N is number of cluster-head nodes; and message complexity of O((logN)+W) time, where W is the number of check-pointing messages. These results indicate that it is possible to add fault tolerance to a decentralised CDA, which guarantees continued participation in the auction while retaining reasonable performance overheads. In addition, we propose a decentralised consumption scheduling scheme that complements the auctioning scheme in guaranteeing successful power allocation within the RCSMG. Third, since grid participants are self-interested we must consider the issue of power theft that is provoked when participants cheat. We propose threat models centred on cheating attacks aimed at foiling the extended CDA scheme. More specifically, we focus on the Victim Strategy Downgrade; Collusion by Dynamic Strategy Change, Profiling with Market Prediction; and Strategy Manipulation cheating attacks, which are carried out by internal adversaries (auction participants). Internal adversaries are participants who want to get more benefits but have no interest in provoking a breakdown of the grid. However, their behaviour is dangerous because it could result in a breakdown of the grid. Fourth, to mitigate these cheating attacks, we propose an exception handling (EH) scheme, where sentinel agents use allocative efficiency and message overheads to detect and mitigate cheating forms. Sentinel agents are tasked to monitor trading agents to detect cheating and reprimand the misbehaving participant. Overall, message complexity expected in light demand is O(nLogN). The detection and resolution algorithm is expected to run in linear time complexity O(M). Overall, the main aim of our study is achieved by designing a resilient and cheating-free CDA algorithm that is scalable and performs well on resource constrained micro-grids. With the growing popularity of the CDA and its resource allocation applications, specifically to low resourced micro-grids, this thesis highlights further avenues for future research. First, we intend to extend the decentralised CDA algorithm to allow for participants’ mobile phones to connect (reconnect) at different shared smart meters. Such mobility should guarantee the desired CDA properties, the reliability and adequate security. Secondly, we seek to develop a simulation of the decentralised CDA based on the formal proofs presented in this thesis. Such a simulation platform can be used for future studies that involve decentralised CDAs. Third, we seek to find an optimal and efficient way in which the decentralised CDA and the scheduling algorithm can be integrated and deployed in a low resourced, smart micro-grid. Such an integration is important for system developers interested in exploiting the benefits of the two schemes while maintaining system efficiency. Forth, we aim to improve on the cheating detection and mitigation mechanism by developing an intrusion tolerance protocol. Such a scheme will allow continued auctioning in the presence of cheating attacks while incurring low performance overheads for applicability in a RCSMG

    On the Identification of Agents in the Design of Production Control Systems

    No full text
    This paper describes a methodology that is being developed for designing and building agent-based systems for the domain of production control. In particular, this paper deals with the steps that are involved in identifying the agents and in specifying their responsibilities. The methodology aims to be usable by engineers who have a background in production control but who have no prior experience in agent technology. For this reason, the methodology needs to be very prescriptive with respect to the agent-related aspects of design
    • 

    corecore