
Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 5

2005

Oscar Ardaiz, Pablo Chacin, Isaac Chao, Juan Carlos Cruellas, Felix Freigtag, Manuel
Medina, Leandro Navarro, Miguel Valero (Universidad Polytecnica de Catalunya), Omer Rana, Liviu
Joita (Cardiff University), Torsten Eymann (University of Bayreuth)

Proof-of-Concept Application - Annual Report Year 1

ISSN 1864-9300

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/33806304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

Oscar Ardaiz, Pablo Chacin, Isaac Chao, Juan
Carlos Cruellas, Felix Freigtag, Manuel
Medina, Leandro Navarro, Miguel Valero
(Universidad Polytecnica de Catalunya), Omer
Rana, Liviu Joita (Cardiff University), Torsten
Eymann (University of Bayreuth)

1864-9300

IST-FP6-003769 CATNETS

D 3.1
Implementation of additional services for the economic enhanced platforms

in Grid/P2P platform: Preparation of the concepts and mechanisms for
implementation

Contractual Date of Delivery to the CEC: 31 August 2005

Actual Date of Delivery to the CEC: 31 August 2005

Author(s): Oscar Ardaiz, Pablo Chacin, Isaac Chao,
Juan Carlos Cruellas, Felix Freigtag, Liviu
Joita, Manuel Medina, Leandro Navarro,
Omer F. Rana, Miguel Valero

Work package: WP3

Est. person months: 24

Security: public

Nature: final

Version: 1.0

Total number of pages: 113

Abstract:

This deliverable describes the work done in task 3.1, “Implementation of additional services
for economic enhanced platforms in Grid/P2P platform: Preparation of concepts and
mechanisms for implementation” from the WP 3, “Proof-of-Concept Applications”. The
document is divided in five parts: the introduction of Cat-COVITE application – motivation,
the introduction of the Catallactic middleware and the WS-Agreement concept; requirements
and concepts of the Cat-COVITE application with the Catallaxy; the Catallactic middleware;
the integration of Catallactic middleware and Cat-COVITE application; and the conclusion
and further work.
Keyword list: (optional)

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the
Commission of the European Communities as project number IST-FP6-003769. The partners
in this project are: LS Wirtschaftsinformatik (BWL VII) / University of Bayreuth
(coordinator, Germany), Arquitectura de Computadors / Universitat Politecnica de Catalunya
(Spain), Information Management and Systems / University of Karlsruhe (TH) (Germany),
Dipartimento di Economia / Università delle merche Ancona (Italy), School of Computer
Science and the Welsh eScience Centre / University of Cardiff (United Kingdom), Automated
Reasoning Systems Division / ITC-irst Trento (Italy)

University of Bayreuth
LS Wirtschaftsinformatik (BWLVII)
95440 Bayreuth
Germany
Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contact person: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors
Jordi Girona, 1-3
08034 Barcelona
Spain
Tel: +34 93 4016882, Fax: +34 93 4017055
Contact person: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and
Systems
Englerstr. 14
76131 Karlsruhe
Germany
Tel: +49 721 608 8370, Fax: +49 721 608
8399
Contact person: Daniel Veit
E-mail: veit@iw.uka.de

Università delle merche Ancona
Dipartimento di Economia
Piazzale Martelli 8
60121 Ancona
Italy
Tel: 39-071- 220.7088 , Fax: +39-071-
220.7102
Contact person: Mauro Gallegati
E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh
eScience Centre
Cardiff University, Wales
Cardiff CF24 3AA, UK
United Kingdom
Tel: +44 (0)2920 875542, Fax: +44 (0)2920
874598
Contact person: Omer F. Rana
E-mail: o.f.rana@cs.cardiff.ac.uk

ITC-irst Trento
Automated Reasoning Systems Division
Via Sommarive, 18
38050 Povo – Trento
Italy
Tel: +39 0461 314 314, Fax: +39 0461 302
040
Contact person: Floriano Zini
E-mail: zini@itc.it

Changes

Version Date Author Changes

1 Introduction... 7

1.1 Cat-COVITE application and Catallaxy mechanism – motivation................................ 7
1.1.1 Description of Service Oriented Architecture (SOA) in COVITE application....... 8

1.2 Catallactic middleware – introduction ... 9

1.3 Web Service Agreement (WS-Agreement) – introduction... 10

2 Cat-COVITE application... 11

2.1 COVITE application – description and architecture .. 11

2.2 Cat-COVITE application – requirements and concepts for Catallaxy....................... 12
2.2.1 COVITE - from centralised approach to decentralised approach.......................... 13

2.3 Layer models – Cat-COVITE model architecture within Catallaxy mechanism. .. 15

3 Catallactic middleware .. 18

3.1 Requirements.. 19

3.2 Concepts and design guidelines... 21

3.3 Architecture Structure ... 23

3.4 Related Work on Architectures for Economic Based Resource Management 25

3.5 Components and mechanisms ... 26
3.5.1 Registering resources and agents .. 26
3.5.2 Resource Discovery ... 27
3.5.3 Negotiating for resources .. 28

3.6 Implementation of prototype.. 29
3.6.1 Implementation toolkit selection .. 29
3.6.2 Implementation approach ... 31
3.6.3 Implementation of P2P Agent Communication Layer ... 32
3.6.4 GT4 as Query Resolver... 34

4 Integration of middleware and Cat-COVITE application ... 36

4.1 Application and Catallactic middleware interaction description................................. 36
4.1.1 Logical view .. 36
4.1.2 Physical Deployment on GT4 containers ... 37

4.2 Use cases – description, flow diagrams, sequence diagrams, actions 38

4.3 Concepts and mechanisms for the application implementation – requirements 43

4.4 WS-Agreement - concepts and requirements .. 45

5 Conclusion and further work ... 49

5.1 Impact of the Catallactic middleware in the application.. 49

5.2 Conclusions on the adaptation of the middleware to an existent application...... 49

5.3 Roadmap to first CATNETS prototype - open issues and future work 50

6 References .. 51

Annex A – The Architecture Development Process.. 54

A.1 Architecture Design Process .. 54

A.2 Architecture Specification... 55

A.3 References.. 56

Annex B – Peer-to-Peer Architectures... 57

B.1 Star topology... 58

B.2 Ring topology .. 59

B.3 Hierarchical topology.. 60

B.4 Mesh topology... 60

B.5 Centralised + Ring .. 61

B.6 Centralised + Decentralised .. 61

B.7 References.. 62

Annex C – Specifications of P2P Agent layer... 63

C.1 Functional Blocks ... 63

C.2 Requirements .. 65

C.3 References.. 67

Annex D - Middleware toolkits evaluation .. 69

D.1 Identification of candidate middleware toolkits and evaluation process 69

D.2 Presentation of the candidates... 71
D.2.1 Web Services JAX-RPC implementations (Axis) ... 71
D.2.2 WSRF/ OGSA .. 72
D.2.3 J2SE ... 74
D.2.4 JXTA... 75
D.2.5 JADE .. 76
D.2.6 Diet Agents ... 76

D.3. Middleware Evaluation Summary .. 78
D.3.1 Functional view: Mapping middleware toolkits into the architecture 78
D.3.2 Technical View ... 79
D.3.3 Development view.. 81
D.3.4 Tests on middleware toolkits integration .. 84

D.4 Conclusions.. 85
D.4.1 Conclusions on functional, technical and development views................................. 85
D.4.2 Joint selection of middleware and application ... 87

D.5 Middleware Toolkit Evaluation Details... 88
D.5.1 Functional View ... 88
D.5.2 Technical View ... 93
D.5.3 Development View ... 95

D.6 Relevant Standards .. 97
D.6.1 Web Services Standards .. 97
D.6.2 WSRF Related Standards... 101

D.7 References ... 102

Annex E – Application framework – concepts and mechanisms 105

E.1 WSDL file... 105

E.2 The service source code .. 107

E.3 Agreement Template examples.. 108

E.4 Agreement Offer examples .. 111

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

1 Introduction
This deliverable describes the work done in task 3.1 “Implementation of additional
services for economic enhanced platforms in Grid/P2P platform: Preparation of
concepts and mechanisms for implementation” from the WP 3, “Proof-of-Concept
Applications”. The document is divided in five parts: the introduction of the Cat-
COVITE application (Catallactic COllaborative VIrtual TEams), which make use of
concepts and models of the COVITE application [JPB04], and the motivation for
Catallaxy mechanism and the WS-Agreement [WS-Ag05] concept; requirements and
concepts of the Cat-COVITE application with the Catallaxy; the Catallactic
middleware; the integration of the Catallactic middleware and the Cat-COVITE
application; and the conclusion and further work.

1.1 Cat-COVITE application and Catallaxy mechanism –
motivation

A typical Architecture / Engineering / Construction (AEC) industry project involves
many individuals and companies forming a consortium for the duration of a project.
Such projects range in size from the design and construction of a single building, to the
creation of a large national infrastructure such as airports, dams, and highways. These
projects are usually unique, very complex and involve many participants from a number
of organizations acting collaboratively. The members are geographically dispersed. The
consortia include design teams, product suppliers, contractors and inspection teams who
must collaborate and conform to predefined scheduling constraints and standards. These
participants also work concurrently, thus requiring real time collaboration between
geographically remote participants. Each consortium is in effect a virtual organisation
(VO). A typical consortium member is often providing similar services to multiple
projects simultaneously involving different partners. Web based communication
technology is beginning to play an increasingly important role in supporting
collaboration in AEC projects particularly to enable project managers to identify the
current state of a project, its activities, and the constraints on these activities and their
schedules. The planning, implementation and running of these projects is thus a
complex task in which the Grid/P2P will be an important infrastructure.

COVITE supports the establishment of these VOs consisting of virtual design teams in
the AEC industry. By Grid-enabling an existing commercial software package, Product
Supplier Catalogue Database, an ActivePlan Solutions Ltd. (www.activeplan.co.uk)
software package, COVITE enables these virtual teams to plan, schedule, coordinate,
and share components between designs and from different suppliers.

The ability of a free-market economy to adjudicate and satisfy the needs of VOs, in
terms of services and resources, represent an important feature of the Catallaxy
mechanism. Such VOs could require large amount of resources which can be obtained
from computing systems connected over simple communication infrastructure such as
Internet. There are also possibilities for these VOs to try maximizing their own utilities
on the market.

Friedrich August von Hayek [FAvH89] and other Neo-Austrian economists understood
the market as a decentralised coordination mechanism opposite to a centralised

7

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

command economy. The project will investigate how Catallactic mechanism can be
implemented for the resources allocation in the real application layer networks. The
application prototype will be based on the COVITE application developed by Cardiff
University in the COVITE project [COV04] and will be named Cat-COVITE
application. This prototype will provide an assessment of the validity of the economic
enhanced middleware used by the Cat-COVITE application. The system architecture
within the application has been significantly modified to reflect the new requirements of
the Catallactic mechanism, and particular support has been provided to utilise a P2P
architecture.

The particular approach adopted in the Cat-COVITE application is employable in a
significant number of other industrial applications which make use of distributed
databases. In this way, the lessons learned from this application, and integration with
the Catallactic middleware may find use by a very wide community.

1.1.1 Description of Service Oriented Architecture (SOA) in
COVITE application

A service-oriented architecture is essentially a collection of services. These services
communicate with each other. The communication can involve either simple data
passing or it could involve two or more services coordinating some activity. Some
meaning of connecting services to each other is needed.

The COVITE application is divided into two functional services: Security Service and
Multiple Database Search Service (MDSS). Figure 1 gives a conceptual view of the
COVITE application and its main components.

Figure 1 – COVITE application diagram

The security service defines a security framework for the COVITE application using the
Globus Security Infrastructure (GSI) [GSI04]. GSI is based upon Public Key
Infrastructure (PKI) and requires users to have a private key and an X.509 certificate
used to authenticate a user to Grid services. The important feature of GSI is the single
sign-on capability and the ability to perform delegation, achieved through the use of a

8

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

proxy, to perform the authentication to the COVITE resources on a user’s behalf. The
security service also provides the capability of role-based privileges within the VO. In
this instance, a user is given access to particular services based on their role within a
project. Based on this model, a user with a particular identity may be given access rights
to different services at different times. Role-based access control is particularly useful
for managing and engaging in consortia-based projects.

The Grid enabled Multiple Database Search Service (MDSS) enables searching across a
large number of supplier databases using a cluster of machines in a Grid network. When
a search is made by the MDSS, the machines in the Grid network should collaborate
while retrieving the matching products. In this instance, the query is defined according
to a data model that is specific to a given application domain. Arbitrary text queries (as
in the Google.com search engine, for instance) are not allowed.

1.2 Catallactic middleware – introduction
We believe the requirements imposed by the application scenarios analyzed demand an
innovative approach for the construction of the resource allocation middleware. The
proposed approach is the construction of a framework that offers a set of generic
negotiation mechanism, on which specialized strategies and policies can be dynamically
plugged to adapt to specific application domains or market designs. The middleware
should therefore offer a set of high level abstractions and mechanisms to locate and
manage resources, locate other trading agents, engage agents in negotiations, learn and
adapt to changing conditions. We will first analyze the architectural requirements that
need to be addressed to fulfil this vision and then present the proposed architecture.

We propose a layered architecture shown in the figure 2. This layered approach offers
the palpable benefit of a clear separation of concerns between the layers, which beside
helping in tackling the complexity of the system, also facilitate the construction of a
more adaptable system as the upper layers can be progressively specialized (by means
of pluggable rules and strategies) into specific application domains.

Economic Algorithms

Economic Framework

P2P Agents

Base Platform

Applications

C
atallactic

M
iddlew

are

Figure 2 - A layered architecture for resource allocation

Agents in the Economic Algorithms Layer are responsible for implementing the high
level economic behaviour contained in the economic algorithms layer (negotiation,
learning, adaptation to environment signals, other agent’s strategies and its own
outcomes). Applications themselves do not participate (and are not actually aware of)
the negotiation, but delegate it to the economic agents.

9

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Economic agents rely on a lower level layer, the P2P Agent Layer, for the self-
organization of the systems and the interaction with the base platform that ultimately
manages the resources being traded. This layer offers key functions like the
maintenance of the trading network topology following a P2P paradigm, the
decentralized resource discovery and the group communication among agents.

In this context the term “P2P” should be interpreted as a general approach for
distributed system design, characterized by the ad-hoc nature of the system topology
and the functional symmetry of its components, which can be realised under very
different architectures, ranging from unstructured and disperse networks to very
hierarchical systems.

Between those two layers, a Framework Layer isolates economic agents from technical
complexities; much in the same tenor that modern online trading platform allows non
expert users to trade stocks. This framework offers basic functions like searching for
suitable providers given a resource specification, handle the exchange of messages
during the negotiation process, keeping track of the evolution of the negotiation for
further adaptation of strategies.

1.3 Web Service Agreement (WS-Agreement) –
introduction

WS-Agreement protocol specification has been developed by the GRAAP Working
Group (Grid Resource Allocation and Agreement Protocol WG) of the Scheduling and
Resource Management (SRM) Area of the Global Grid Forum (GGF) [GGF05].

WS-Agreement is an XML language protocol for specifying an agreement between a
resource/service provider and a consumer [WS-Ag05]. It is generally aimed to be a one-
shot interaction, and is not directly intended to support negotiation. However, it can
form a useful basis on which negotiation between two parties may be conducted.

WS-Agreement can cover a wide scope of application scenarios and is suitable for use
within the CATNETS project in regards to the establishment of an agreement between a
service provider and a service consumer. As is specified by the WS-Agreement
specification, the establishment of the agreement is achieved by using a single
document format and a protocol comprising few states. The service provider acts as an
agreement provider, while the service consumer as the agreement initiator. Chapter 4.4
will further detail the concepts and requirements of WS-Agreement in the CATNETS
project context.

10

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

2 Cat-COVITE application
This chapter is divided in three parts: first part introduces the description and
architecture of the COVITE application, the second part introduces the Cat-COVITE
application with the requirements and concepts for the Catallaxy mechanism, while the
third part presents the layered model of the Cat-COVITE application.

2.1 COVITE application – description and architecture
In the COVITE application (Figure 3), collaboration plays a key role in the procurement
of supplies for construction projects. The collaboration can take place in various ways.

The suppliers and purchasers collaborate to procure supplies for a particular
construction project by using the COVITE application. The application serves as a
platform to bring together large number of suppliers and contractors to negotiate and
procure the necessary supplies for the construction projects.

There is collaboration between the Specification Designers when designing the Product
Classes and specification types. A Product Class is defined as a template made up of a
number of different specification types. Product Classes help product suppliers to
populate their databases with their own products in a structured, standardised manner.
Collaboration takes place when a number of Specification Designers come together to
design a Product Class or when the Product Class is being peer reviewed.

Web Service
Interface

Multiple Database
Search Service (MDSS)

Multiple Database
Search Service (MDSS)

Multiple Database
Search Service (MDSS)

Apache Axis Soap Server

<<soap messages >> >> <<soap messages ><<soap messages >

Master Grid Service (MGS)
 Metadata Query Job Allocation Collation of datasets

Single user Active Plan Web Application
(Search Criteria Specified here) Product Class

Database (PCD) System

 SD Systems

Web Service
Interface

Web Service
Interface

Web Service
Interface

Web Service
Interface

Web Service
Interface

Security
Service

VO

Figure 3 – COVITE flow architecture diagram

11

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Collaboration also takes place when a search is made across a large number of supplier
databases to retrieve products matching a criteria set by the purchasers or contractors.
The MDSS enables a search to be conducted, making use of the cluster of machines in a
Grid network to retrieve the matching products.

Figure 3 presents the flow architecture diagram of the COVITE application. The
Security Service and the MDSS have been created as a result of investigating the
applicability of Grid technologies in the sphere of AEC projects. Both services reside on
the server side of the COVITE application. The security service defines a security
framework for the COVITE application using the GSI [GSI04], while the MDSS is
based on the Open Grid Services Architecture (OGSA) model [OGSA03] and provides
a Grid service solution for processing a large amount of data. MDSS is oriented towards
the specific purpose of serving the needs of the members of a VO within an AEC
industry community. The Master Grid Service (MGS) distributes jobs to the Grid cluster
running MDSS instances that performs the actual work of invoking Supplier Databases
(SD) Systems and requesting appropriate data. SOAP messages [SOAP03] are created
by the MDSS instances using an Apache Axis SOAP Server [COV04]. The SD Systems
provide an XML based Web Service interface for the operations that can be performed
by the MDSS [COV04].

2.2 Cat-COVITE application – requirements and concepts
for Catallaxy

A centralised and hierarchical topology used in the COVITE project could be combined
with a decentralized topology and form a peer-to-peer network architecture.

The centralised + decentralised system can provide great scalability, extensibility and
fault-tolerance features. At a glance, this topology has a lack of security support due to
the peers are highly dynamics in terms that they can join or leave anytime the peer-to-
peer distributed system.

Peer-to-Peer computing architecture allows for decentralised application design, moving
from centralised server models (like COVITE architecture) to a distributed model in
which each peer can benefit and profit of being connected with other peers. In this type
of distributed architecture, clients and servers have horizontal relationships rather than
vertical relationships.

There are common features between P2P and Web Services technologies that can be
taken into the consideration of the architecture design of Cat-COVITE prototype. Both
technologies leverage a Service Oriented Architecture (SOA), with common stack for
publishing and discovery across the network. In P2P architecture, a peer can be a
provider, a consumer and/or a registrar in the same time, whereas in a Web Services a
node is typically a producer and a consumer but not a registrar. The XML-based
standards play an important key in the convergence of P2P and Web Services. Web
Services can provide a very easy way to handle registration, discovery and content
lookup for P2P applications, as well, via the new Web Service security standards, can
ensure the integrity of data and services accessed by P2P software. As far as directory
services are concerned, in the P2P architecture, the Web Service implementation of
using a single central UDDI registry, which contains the service description of the Web
Services, can be transformed into a decentralised node. XML-based Web services are an
important technology in defining the business processes in P2P systems too, as they

12

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

allow easy communication between peers over the Internet in a platform- and software-
independent way.

2.2.1 COVITE - from centralised approach to decentralised
approach

Such centralised architecture used in the COVITE project [COV04] is considered in the
CATNETS project in the context of interacting with other centralised and decentralised
systems. Figure 4 presents an architecture scenario of Cat-COVITE application model,
in the centralised use case, while Figure 5 shows an architecture scenario of Cat-
COVITE application model, in the decentralised use case.

Site 1

Figure 4 – Cat-COVITE architecture – centralised use case

Grid/P2P

Slave1

MGS1 MGS2

Slave3 Slave4

Site Monitor 1

Site 2

Slave1 Slave2

MGS1

Slave3

MGS2

Site Monitor 2

Site 3

MGS1 MGS2

Site Monitor 3

Slave1 Slave2 Slave3

CATNETS Market Broker

Service
Market Broker

Resource
Market
Broker

Service
R yegistr
1

Service
Registry 2

Service
Registry 3 Security Service Broker

Wrapper

Resource
Regi ry

Resource
Regi yst

1
str

2

Resource
Regi ystr

3

Resource
Provider
Node 1

Resource
Provider
Node 3

Service
Provider
Node 1

Resource
Provide

Service
Provider
Node 3

r
Node 2

Service
Provider
Node 2

CATNETS
Middleware

13

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Site 1

Figure 5 – Cat-COVITE architecture – decentralised use case

Glossary:

� Site – the authority that registers and controls all the resources and services made
available by the registered Virtual Organisations (VOs).

� Site Monitor – the central registry of the Site which keeps control of all VOs created
and registered within the Site authority.

� Master Grid Services (MGS) – The MGS is allocated to each Virtual Organisation
created for an AEC project under the rules of the Site Monitor.

� Slaves, Resources - resources allocated to each VOs, registered to the MGS and
used to fulfil all jobs within the VO. These Slaves, Resources could be allocated
within the Site or could be bought from the market and integrated within the VO.

� Service Registry i (where i = 1 to n) would be responsible of registering all services
available within the Site authority control. These registries could be in the form of
UDDI registry specifications or in a database form (MySQL, SQL Server, and
Access).

� Resource Registry i (where i = 1 to n) would be responsible of registering all
resources available within the Site authority control. These registries could be in the
form of UDDI registry specifications or in a database form (MySQL, SQL Server,
and Access).

� Resource Provider Node i (where i = 1 to n) would be responsible for matching the
requests from market resource agents with the available resources on site.

Grid/P2P

Slave1

MGS1 MGS2

Slave3 Slave4

Site Monitor 1
Catallactic-enabled

Site 2

Slave1 Slave2

MGS1

Resource

Security Service

Site Monitor 2
Catallactic-enabled

Site 3

MGS1 Security Service

Site Monitor 3
Catallactic-enabled

Slave1 Slave2 Resource

14

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� Service Provider Node i (where i = 1 to n) would be responsible for matching the
requests from market service agents with the available services on site.

The architectures consists a number of Site Monitors (SM) with a number of Master
Grid Services (MGS) under their control, each of MGS having a cluster of Grid
computers acting as slaves that perform the received jobs. In the context of the COVITE
project, the communication between MGS and the cluster of Grid computers is XML-
based using SOAP messages. Cat-COVITE application will keep the same characteristic
of communication based on SOAP messages.

Site Monitors undertake an important role within the system, and are responsible for:

� Establishing and maintaining a P2P communications infrastructure.

� The point of propagation of “call for bids” market messages between Grids/P2P
sites and other peers. An example is the use of an auction protocol, where such site
monitors act as auctioneers for their own sites. The site monitor therefore acts as a
control authority for a particular site participating in the market, as well as nodes in
a P2P/Grid topology.

� They also act as a rendezvous point in a P2P topology – essentially supporting the
caching of messages that are propagated in the network.

� They can also provide a service or resource registries – responsible for registering
all services available within their site.

A resource provider node i would be responsible for matching the requests from market
resource agents with the available resources on site. Similarly, a service provider node j
would be responsible for matching the requests from market service agents with the
available services on site. Both resource and service provider nodes will be agent based
nodes capable of hosting agents that interact within the CATNETS market. Another
function of these nodes will be to send notification messages, such as forwarding
requests for resources/services to their neighbouring nodes. They may negotiate directly
with the nearest nodes for resources/services.

2.3 Layer models – Cat-COVITE model architecture within
Catallaxy mechanism.

The Figure 6 shows the layer architecture of the Catallaxy mechanism, while Figure 7
shows the mapping between Cat-COVITE architecture and the Catallaxy mechanism.

The Basic Service is a standardized service for query job execution. At the application
layer, the Basic Service consists of:

� Seller entity on the service market

� Query Job Execution Environment (offers the deployment of „slaves“, which are
able to execute the query)

� Translate query to resource demand

15

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Figure 6 – CATNETS Catallactic Scenario

Figure 7 – Cat-COVITE CATNETS-enabled service overview

From the Cat-COVITE application point of view, the Basic Service Logic issues are the
response time and the quality and quantity of the search.

The main functionalities of the Resource Co-Allocator, at the resource layer level, are:

Complex
Service
Logic

Resource
Agent

m n k

Basic
Service
Logic

Resource
Co-Allocator

Resource
Agent

first market second market

Application
Layer

Resource
Layer

Basic Service

Resource Co-Allocator
gets a resource bundle
request and buys this
resource bundle from one
or more local resource
managers

Delivers service
and maps service
demand to a
bundle of resource
demands

Complex
Service

Service
Selector

MiddlewareApplication
Layer

Catallactic
Access Point

Local
Resource

m n k

Translate query to
resource demand

Resource
Co-

Allocator
Local

Resource

service market resource market

Resource
Layer

Query Job
Execution Service

Query Job
Execution
selector

Cat-Covite
App.

(MGS)

Agent, which acts
on behalf of the
MGS

Translates query into
middleware
specification query

Compose
query

16

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� Represents the buyer entity on the resource market

� Co-allocator of resources (resource bundles) by parallel negotiation with different
resource providers (local resource manager entities)

� Informs the Basic Service Logic about the outcome of the resource negotiation

Sellers’ entities on the resource market are able to provide a set of resources via the
Local Resource Manager (LRM). The Resource Agents act on behalf of these LRMs,
which hide the physical resources behind them. More details about how markets are
working can be found in the Deliverable D1 (WP1.1) [D1-WP1.1-05].

The term of Catallactic Access Point (CAP) represents the access point for the “on-
demand” application requests. It makes use of WS-Agreement protocol to interact with
the Master Grid Service (MGS) module of the application.

The term of complex service logic describes the following actions:
� Translates a request to a Basic Service - query service
� Starts parallel negotiation with a number of agents representing Query Job

Execution Services (Basic Services) to fulfil any performance constraints identified
in its contract (implemented via WS-Agreement)

� Sends a query to a list of Query Job Execution Services (Basic Services)

The term of service selector describe the following actions:
� The service selector is a query job execution selector.
� The service selector sends this query to a list of Query Job Execution Services

(Basic Service Copies)
� Then starts parallel negotiation with them to fulfil the QoS constraints.

17

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

3 Catallactic middleware
WP3 Middleware Implementation focuses on the technical requirements of ALN
middleware. It evaluates the available middleware toolkits used in Peer-to-Peer and grid
implementations, identifies and implements specific components of the infrastructure
required for the integration of economic enhanced components developed in WP2.
These additional components will include extensions to the market environment, new
and extended components for network agents, and new components for measuring
performance of the ALN. A major deliverable of WP3 and a milestone for the project is
a “ready-to-use” middleware, which will be used in the prototype application.

The term “application layer networks” (ALN) integrates different overlay network
approaches, like Grid and P2P systems, on top of the Internet. Their common
characteristic is the redundant, distributed provisioning and access of data, computation
or application services, while hiding the heterogeneity of the service network from the
user’s view [ERA+03].

The characteristics of the resource allocation scenarios being considered might be very
variable, with very different usage scenarios like collaborative P2P networks, scientific
P2P grids and P2P Content Distribution Networks (CDNs). Even when all those
systems are P2P, they have a great variability in terms of key characteristics.

Table 1 summarizes some of those characteristics in an abstract ANL model (based on
[Catn03] and [IaFo01]) and evaluates how it could impact the Catallactic middleware.

Characteristic Description Impact on middleware
Overlay topology Topology of the logical network that

ALN components uses to
communicate (e.g. random,
hierarchical, power law)

Communication mechanisms must
adapt to diverse topologies to
guarantee an efficient message
routing

Configuration
Dynamism

to what extend the ALN
configuration is maintained in terms
of participant nodes and overlay
structure.

Information regarding resource
location and network topology
must be updated frequently

Resource
Distribution

Resources in the network might be
highly distributed among nodes or
concentrated in few nodes

The overlay network architecture
and the request forwarding
algorithm for centralized resources
can be hierarchical, whereas for
distributed resources a flooding
style might be more efficient
(mostly when considered in highly
dynamic environments)

Resource Diversity From commodity resources to highly
specialized, unique resources

Commodity resources can be
easily located by local broadcasts
or DHT-like mechanisms. Unique
resources might need efficient
network-wide discovery and
match making algorithms

Usage Patterns Clients might request same resources
recurrently or each request might be
unique

Recurrent request might benefit
from caching information from
previous requests (resource
location, for example)

Table 1 - Characteristics of ANL applications

18

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

The main challenge is therefore to build a middleware architecture that could be adapted
to different ALN architectures, what will define aspects like the logical topology used
for communication, the characteristics of the nodes and the physical distribution of
components.

To address this challenge, the Catallactic middleware has been envisioned as a set of
economic agents that interact between them and with the software components of the
underlying ALN, to coordinate, in a decentralized way and using economic criteria, the
assignment of resources, as can be seen in the Figure 8.

C

SC

R

SC

R

SC

R

R

R SC

R

C

SC

SC

R

CR

R

SC RCNode Client Service Copy Resource Negotiation

Figure 8 - CATNETS as a P2P network of agents.

In that vision, those agents interact under a P2P architecture. The term P2P should be
interpreted not as an specific system architecture, but as a general approach for
distributed system design ([Pepi03a]) that can be realized under very different
architectures and topologies, ranging from unstructured and disperse networks to very
centralized systems ([P2p02a], [MKL+02]). Annex B “P2P Architectures” surveys
some architecture styles that can be adopted by P2P systems.

In the following sections we present the specific requirements that the Catallactic
middleware should satisfy and the design principles that guided the process of designing
its architecture. We also analyze their impact on the selection of the middleware
architecture and implementation options.

The definition of the middleware has followed an architecture based development
process, as described in annex A “The Architecture Development Process”, which can
be summarized in three main activities: requirement analysis, design and validation.
This deliverable covers the first two, while the last one, validation, will be addressed in
future deliverables.

3.1 Requirements
� Scalability

The very essence of the CATNETS project is to use Catallactic mechanism to
manage the resource allocation in very large ALNs, so the possibility to scale cannot

19

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

be limited by any design decision. The Catallactic middleware should be able to
address scenarios with thousands of nodes in a highly dynamic environment, where
nodes enter and leaves the network frequently.

The dynamism in the network configuration implies that information about the
system should be maintained at a minimum (avoiding global topological
information) and that updates must be easy and efficient. Also, under this scenario,
the common assumption that nodes and resources are organized in well known and
trusted administrative domains might not apply. So, excessive dependency of
existing services on each administrative domain should be avoided. Scale also
implies a high level of heterogeneity in applications, the underlying platform,
resources, QoS of providers, reliability of any middleware service and availability
of nodes (some will be quasi permanent, other will enter and leave).

� Compatibility with different base platforms

The design of the middleware should consider a generic design that allows the
integration of different base platforms. This might lead to the definition of generic
APIs and the definition of very flexible and extensible models to represent the
platform’s information (resources, for example). Also, some adaptors would be
needed to translate this generic model to the specific model used for each platform.
This translation mechanism could harm the performance of the system if
transformations are complex or frequent.

� Allow the self-organization of components

The exact characteristics of the P2P architecture for the Catallactic middleware will
be one of the key issues to be addressed in the design and implementation phases.
However, all P2P systems exhibit a set of characteristics that are relevant from the
architectural point of view [P2P02b, Pepi03a]:

� Decentralization: there is no single or centralized coordination nor
administration point

� Symmetric interaction between peers: all peers are simultaneously clients
and servers requesting service of, and providing service to, their network
peers

� Non-deterministic topology: At any moment in time, the overall topology of
a P2P network is completely unpredictable. The set of nodes that makes up
the network varies constantly

� Heterogeneity: The devices contributing in P2P applications can differ in
many respects, including communication bandwidth, available memory and
the persistence of their network connections.

� Dynamic and virtual allocation of communication paths: due to
communication paths between peers are created dynamically based on
various factors, like network conjunction or intermediate peers state.

These characteristics, when considered together, lead to a set of astringent
architectural requirements for self-organization. The dynamicity of the network
prevents an a priori configuration of the peers or the maintenance of centralized

20

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

configuration files. Peer need to discover continuously the network characteristics
and adapt accordingly, what requires a distribution of some important system
functions like security, resource management, topology management, among other,
which have been traditionally reserved to very specialized nodes.

As all the system function should be implemented in all peers and there have
heterogeneous properties and configurations, all these self-organization functions
should make little assumptions about the underlying platform’s features.

� Support different implementation architectures

The Catallactic mechanisms could be implemented in different platforms and for a
diversity of applications, each with its unique architecture regarding the
organization of clients, service providers and brokers, as well as with respect to the
communication topology.

Therefore, the Catallactic Agents (that implement the behavior of Clients, Services,
Service Copies, and the Catallactic middleware components (that implements
supporting functions like resource discovery, resource management, request
processing, etcetera) will be deployed under different configurations and will use
different communication patterns.

Different architecture will lead to different ways to organize and deploy the
Catallactic components. Therefore, each component should not make any
assumptions about a specific distribution. Basic functions of the Catallactic
middleware should be implemented as independent agents instead of subroutines
into a complex agent. This will facilitate their redistribution across the different
components of the underlying platform and the applications that use it.

Different architecture models will lead to different interaction patterns between the
base platform, the applications and the Catallactic middleware. Under some
scenarios, the applications will make request for resources to the base platform,
which will in turn, forward it to the Catallactic middleware (probably, using a
component specifically modified to interact with it). In other scenarios, the
application will make request directly to the Catallactic middleware (probably,
using a component specifically modified to interact with it) which will interact with
the base platform to fulfil it.

3.2 Concepts and design guidelines
To address the architectural requirements defined in the previous sections, we have
defined a series of strategies that allows us to separate the different concerns and
manage them individually without missing the coherence of the architecture as a whole.
These strategies are summarized as follows:

� Isolate economic agents from the underlying ALN

Agents should relay in its ability to discover other agents and to efficiently
communicate with them. However, due to the potential variability of the ALN’s
topology as well as the discovery and communication mechanisms, agents should
neither be aware of the overlay topology nor make any assumption about its
communication mechanisms.

21

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

On the other hand, the scalability of CANTNETS will be determined to great extend
by the ability of the Catallactic middleware to efficiently handle a huge amount of
nodes and resources in very dynamic environments.

Middleware will probably need to implement different algorithms to adapt to
different scenarios (for example, adaptation to sudden changes in the network or
disruptions). Also, different algorithms could be used simultaneously to search
resources, combining strategies and increasing the success. It is therefore expected
that discovery will be one of the components more likely to change.

However, isolating the economic agents from the agent discovery process should
not limit the ability of agents to learn about the best peers to negotiate with, neither
should it preclude the integration of agent level information (for example, success
ratio of negotiations with other agents) into the adaptation mechanisms used by the
middleware.

� Allow pluggable mechanisms and strategies

When implementing the Catallactic middleware, it is very probable that different
mechanisms, strategies and policies might be considered to adapt the system to very
different environments. Those components might even coexists, to allow a dynamic
adaptation to the changing conditions. This will allow, for example, using two
completely different requests forwarding algorithms to find local and remote peers,
and deciding to use one or the other depending on the type of request, past
experience or other environmental conditions.

For all major components, like resource discovery, request processing, negotiation
and resource allocation, consider the separation of the basic mechanism from the
decision making of how (and when) to use them.

� Use APIs with Xml based parameters

Many of the APIs for the different Catallactic middleware layers will handle
information that will depend on the specific application domain and base platform
used for implementation. For example, the resource discovery will return a list of
resource descriptions, which depends on the kind of resources used by application:
processors for a Grid, bandwidth for a CDN, and so forth.

Therefore, we found very restrictive to specify those APIs with concrete data types
for their parameters, which will very probably be changed in each implementation
scenario, and might require a massive software actualization.

This limitation can be overcome using Xml based data types in the middleware
APIs, which can be extended or specialized on each specific implementation.
Whenever possible, standard Xml formats should be used.

XML is highly flexible and interoperable but imposes a considerable runtime
overhead in the manipulation of data.

� Create complex behaviour by interaction of simple agents

Traditional agent development approaches are based on the implementation of
complex agents that exhibit sophisticated capabilities like learning or reasoning.
However, this impose some limitations on the protocols and algorithms that can be
used in key concerns like agent discovery and negotiation, which are expected to

22

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

change during the design and implementation phase of the project, as the
requirements are refined.

Instead, we propose that agent behaviour and negotiation algorithms should be
expressed in terms of the interaction of multiple simple, specialized and efficient
agents. These agents are responsible for basic functions like agent discovery,
managing individual negotiations, message routing, message format handling,
exception handling and message encryption ([ZaPa04]), [HWBM02], [MKL+01]).

These agents will require a minimum execution platform, it will be easy to be
implemented and collective behaviour could be adapted changing interaction patters
and including new agents.

Also, designing the system as a set of cooperating agents makes easier to change the
distribution of functions among different nodes, either statically at deployment time
or dynamically depending on the environment (work-load, requirement patterns),
including the possibility of dynamic agent creation and agent migration.

Depending on the capabilities of the implementation platform and the performance
issues that the interaction among many agents might generate, some these simple
agents could be aggregated as specialized behaviours of one “heavy” agent.
However, efficiency must be balanced with the flexibility of the implementation,
because the specification of some key functions is expected to change along the
implementation phase.

3.3 Architecture Structure
We structure the architecture in terms of the separation of two fundamental layers: the
Middleware Services and the Framework [Bers96]. A Middleware Service is a general-
purpose service that sits between platform and applications and is defined by the APIs
and protocols it supports [Emme00].

The framework is a software environment, defined by a set of programming interfaces
and tools, designed to simplify application development for a specific application
domain.

This architecture, shown in Figure 9, is composed of five different layers:

� Application Layer: is given by the domain specific end user applications like
collaboration tools, problem solving environments, and many others. Applications
rely on the base platform for functions like communication and platform level
resource management. However, applications can have application level resources,
like a virtual meeting room in a collaboration tool or a matrix resolution algorithm
in a scientific environment.

The interaction model between the application layer and the Catallactic middleware
is application and middleware dependent. Application can interact directly with the
Catallactic middleware (becoming Catallactic enabled applications) to manage their
resources or they can interact transparently by means of the base platform they are
built on.

� Catallactic Algorithms Layer: Implements economic algorithms for resource
allocation. These algorithms should be domain independent and platform
independent.

23

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

This layer is structured as a set of interacting agents that play the roles of Sellers
and Buyers in service and resource markets. Also, in this layer are extensions and
specializations of the functionalities provided by the underlying framework, to adapt
them to the specific ALN and the resource allocation polices in place.

� Catnets Framework Layer: offers the primitives that supports the implementation
of Catalactic algorithms, like find peers agents to negotiate, start negotiation, make a
bid, wait for a bid. It is dependent on the agent platform being used, but should be
independent of the application domain and the base platform.

This layer is structured in a set of basic entities that model the interaction of trading
agents in a market to exchange goods. These abstract entities are the building blocks
of the Catallactic algorithms.

� P2P Agent Layer: Platform that hosts the Catallactic agents offering a generic P2P
application model with abstractions for the discovery and communication
mechanism, and a generic interface with the underlying platform.

This layer offers a rich development environment, covering the basic functions that
will be used by all implementations; it is responsible for interfacing with the
underlying platform and complementing it when necessary.

� Base Platform Layer: Supports applications and Catallactic middleware. It is
(potentially) domain specific.

The model of interaction with the Catallactic middleware depends on the architecture of
the base platform, but in general will require the implementation of a connector, which
routes the request for resources to the corresponding economic agents. In some cases,
this might even require the re-implementation of some core platform components, like
the GRAMs (Globus Resource Allocation Managers) in Globus [FKL+99].

Resource
Agent

Client
Agent

Service Copy
Agent

Agent
Strategy

Learning
Rules

Market
Norms

Applications
Layer

P2P
Agent
Layer

C
a
ta

lla
ctic

M
id

le
w

a
re

Base
Platform
Layer

Catallactic
Algorithms
Layer

Coral GlobusJXTA Web
services

Environmen-
tal Learning

Market Accounting &
Payment

NegotiationTrading
Agent

Good

Science Engineering Commerce Peer-
Sharing

Content
distribution

Collabora-
tion

Framework
Layer

Catallactic MW
Interface

Execution
Platform

Overlay
Network

Resource
Mgmt.

Security &
Reputation

Communica-
tion

Discovery

Resource
Agent

Client
Agent

Service Copy
Agent

Agent
Strategy

Learning
Rules

Market
Norms

Resource
Agent

Client
Agent

Service Copy
Agent

Agent
Strategy

Learning
Rules

Market
Norms

Applications
Layer

P2P
Agent
Layer

C
a
ta

lla
ctic

M
id

le
w

a
re

Base
Platform
Layer

Catallactic
Algorithms
Layer

Coral GlobusJXTA Web
services

Environmen-
tal Learning

Market Accounting &
Payment

NegotiationTrading
Agent

Good

Science Engineering Commerce Peer-
Sharing

Content
distribution

Collabora-
tion

Framework
Layer

Catallactic MW
Interface

Execution
Platform

Overlay
Network

Resource
Mgmt.

Security &
Reputation

Communica-
tion

Discovery

Figure 9 - CATNETS architecture – Layered View

24

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

3.4 Related Work on Architectures for Economic Based
Resource Management

Both P2P and economy based resource allocation have received a great deal of attention
in the last couple of years. Therefore, there are some projects that have coincidences in
their goals with CATNETS and whose architectures can have some similarities.

MMAPPS project ([Mmap04a], [Mmap04b]) aimed to provide a toolkit for the
development of P2P applications that uses economic based incentive mechanism that
allows the coordination and optimization of these applications. The base architecture
considered a set of applications that users employ to access services distributed in a P2P
overlay network. These applications and services use a middleware which offers
functions like group management, search, service management, security, negotiation,
rules and policies enforcement, accounting and pricing. This architecture allows a
transparent integration of economic mechanism for service negotiation into the
application. MMAPPS considered that all applications and services would be developed
using this framework, so integration of already existing applications was not considered
(at least explicitly) in the design. This is a fundamental departure from CATNETS
approach, where integrability to heterogeneous ALNs is a key design objective.
However, we have found MMAPPS pluggable rules and policies an interesting
approach for handling the adaptation of the Catallaxy market’s rules to different
environments and needs, which will be studied in detail during the design stage.

Related to the idea of economic based resource allocation is the GridBus Project
([BuVe04], [VBW05]), which applies concepts from the utility markets (e.g. power
market) for resource allocation in grid applications. GridBus is based on a Service
Market Directory, where application services are published, and a Service Broker,
which matches the requests from users to the available resources considering the
execution const and diverse QoS parameters and looking for the optimization of the
system wide utility. Our model, on the contrary, is a fully decentralized direct
bargaining between producers and consumers and does not require any centralized
market mechanism. This decentralization brings a higher scalability and a better
adaptability to local resource requirements and to highly dynamic environments. The
drawback is, however a less than optimal allocation of resources [Catn03].

Some few decentralized frameworks have being proposed in the literature, remarkably
OCEAN [PHP+03] and Tycoon [LHF04]. OCEAN (Open Computation Exchange and
Network) provides an open and portable software infrastructure to automated
commercial buying and selling of computing resources over the Internet. Each OCEAN
node that wants to buy resources uses a Matching service, which implements an
optimized P2P search protocol, to find a set of potential sellers based on the description
of the resources being requested. Then, an automatic negotiation process starts with
each seller, based on the rules dynamically defined in a XML format. The ability to
define negotiation rules is a remarkable characteristic of OCEAN that allows the
adaptation of the economic model to diverse applications. The main limitation we found
in this rule based approach is the lack of mechanisms for learning and adaptation to
evolving environments. We found an agent based approach more suitable to achieve this
level of adaptativeness.

25

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Tycoon is a distributed market-based allocation architecture based on a local auctioning
for resources on each node. Auctioneers receive fine grained requests of local resources
from agents acting on behalf of applications and schedule them using efficient sealed
bid auctions in a way that approximates proportional share, allowing high resource
utilization rates and the adaptation to changes in demand and/or supply. One interesting
feature of Tycoon is that it separates the allocation mechanism from the agents which
interprets application and user preferences. This allows the specialization of agent
different applications. Tycoon however doesn’t offer any framework for the
construction of those agents.

A major limitation of Tycoon is that the resource allocation mechanism is already fixed
in the system design and no extension or adaptation methods are offered. To overcome
this limitation, our proposed framework is capable to plug key components to adapt to
specific application domain in environments with heterogeneous or changing resource
allocation requirements. Also, we offer a set of high level tools to develop those
components, alleviating the implementation burden for new market designs.

3.5 Components and mechanisms
To understand the interrelationships between the components of the architecture, it is
necessary to see how they interact in different scenarios, being the more relevant: the
initial registry of resources in markets, the distributed resource search, and the
bargaining process.

3.5.1 Registering resources and agents
Negotiation for resources is carried out by Broker Agents representing the client
requesting a resource, and Resource Agents representing resource providers. How those
agents are actually created is very dependant on the scenario and the architecture of the
systems requesting the resource and offering it. Figure 10 shows a generic situation.

Resource
Agent

Market. Provider

(3) Advertise(Resource)

(2) Create(Resource)

Resource Mgr.

(1) Register Resource

(4) Register Owner
(Resource, Resource Agent)

Middleware

(6) Track resource

(5) Update resource
description

Local Resource
Manager

Figure 10 - Registering Agents and resources

The Service Provider is responsible for creating and registering a resource with its
platform specific Local Resource Manager. It then instantiates a Resource Agent, which
registers itself to the Market Agent to handle negotiations for that resource. The Market

26

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Agent uses the Resource Manager Agent (RMA) to associate the Resource Agent with
the specific resource. The RMA can, optionally, update the resource’s information in the
Local Resource Manager to reflect, for instance, that the resource is already reserved by
the middleware and cannot be offered to other application. Finally, the RMA keeps track
of the resource state (e.g. availability and usage level) and uses this information to
answer queries for resources given a certain characteristics.

3.5.2 Resource Discovery
One of the more critical functions in the middleware is the discovery of resources in a
fully decentralized way, within a dynamic set of nodes (that can enter and leave the
network at any time) which must cooperate in the location of objects.

To address these requirements, the proposed architecture separates three critical
functions: the Overlay Network Agent (ONA) manages the construction and
maintenance of the logical topology of the network, keeping track of other nodes.
Communication Agent (CA) manages the complexities of multicasting messages over
the overlay network and the Object Discovery Agent (ODA) handles the search requests
using a set of pluggable Query Resolver Agents (QRA), which specializes in the location
of a specific kind of objects. ODA is also responsible to coordinate the search with other
nodes when no local information is available. Figure 11 shows how all these
components interact to fulfil a search request.

First, ODA registers to the CA as a listener of multicast messages send to the
“ObjectDiscovery” group; the QRA register to the ODA as a handler for queries of a
specific object type. When the ODA receives a request, forwards it to the corresponding
local QRA (if any) and to other remote ODA sending a multicast message with the
query.

Before sending the multicast, the CA requests a list of known nodes to the ON agent.
Before sending the message, the CA agent asks the ODA to filter and prioritize this list,
allowing the introduction of heuristics in the search (for example, based on the results
from previous requests [IaFo01]). For each selected node, CA agent requests the ONA to
route the message using its knowledge of the logical network’s topology.

On each node, the ODA receives the multicasted message and forwards to the locally
registered RA (if any) and returns the response to the originating node, where the ODA
sends back to the requestor. It can also, optionally, store this response in a local cache to
enhance performance of subsequent requests.

27

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

(3) Search(“Object Type”, Query)

Object
Discovery

Object
Discovery

Comm. Comm. Query
Resolver

(4) multicast(“ObjectDiscovery”,ObjectType+Query)

(2) RegisterResolver(“Object Type”)

(1) RegisterListener(“Object Discovery”)

(8)Notify(“Object Type”+Query)

Response

(9) Resolve(Query)

(10) Process
Query

(11) Answer(“Object Discovery”,Response)
Response

Response
(12) Cache(Response)

Overlay.

List of neighbors

(5) GetNeighbors

(6) Filter Neighbors

selected Neighbors
[For each selected neighbor]

(7) Routet(“ObjectDiscovery”,”Object type”+Query)

Node
boundary

(1) RegisterListener(“Object Discovery”)

Figure 11 - Fully decentralised object discovery

3.5.3 Negotiating for resources
Negotiation process begins when a Client Application (CA) request a resource to the
Broker Agent (BA), giving some contractual conditions (e.g. available budget) and
technical specifications. Figure 12 shows this process.

How the CA communicates with the BA depends on the application scenario. The CA
can be fully aware of the BA or this agent can be invoked by a component in the CA’s
platform (a local resource manager, for instance. Also, the conditions and specifications
can be explicitly given by the CA to the BA, be part of the middleware’s configuration
parameters or a result of the BA learning process.

After receiving the request, the BA asks the Market Agent (MA) for a list of potential
Resource Agents (RA). The MA performs a distributed search to find the resources that
match the specifications and the RAs that handle the negotiation for those resources.
Then the MA filters the SA according to the contractual conditions. The BA selects from
the given list the RA(s) it want to trade with (based on previous experience, for instance)
and starts the negotiation process. The MA has the right to allow or not the negotiation
based on rules governing the market.

28

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

(2) Search(Conditions,Specifications)

Broker Agent Market Resource
Agent

Market

(3) Search(,Conditions,Specifications)

Sellers
Sellers

(6) Negotiate(Negotiation)

(7) Negotiate(Negotiation)

(9) Negotiate(Negotiation)
(10) Ticket

(11) Bid
Response

(8) Accept

Client
Application

(1) Request(Conditions, Specifications)

Ticket

Middleware

(5) Select resource
agents

Node
boundary

Figure 12 - Negotiating for resource

3.6 Implementation of prototype

3.6.1 Implementation toolkit selection
The middleware toolkits selection process was carried out taking into account three
different but related aspects, which are potential applicaction scenarios, software
architecture, and the evaluation of a number of middleware toolkits.

Concerning the evaluation, six toolkits were selected and reviewed: DIET and JADE
agent platforms, J2SE, WSRF/OGSA, Web Services and JXTA. The evaluation
includes their functional properties according to the software architecture defined for
Catnets, their technical characteristics and their suitability as a development toolkit.

From the functional view we conclude that complementary features between the
middleware toolkits exist, which should be exploited to build the CATNETS
middleware. The flexibility of the proposed architecture should allow to use it for
different ALN domains.

Concerning technical features, the solutions provided by the different candidates could
also be complementary, in terms of scalability, messaging performance, discovery
performance and interoperability. Therefore, to address the above requirements, it
would be necessary to compose an architecture that integrates the best implementation
approaches offered by the different toolkits. For example, performance enhancements
could be achieved by a light weighted agent implementation as in DIET, interoperability
would benefit from a web services based communication and scalability could be
achieved by a strong decentralization of key functions, as in JXTA.

29

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

We discard JADE for its lack of architectural flexibility, forced by FIPA standards
compliance, and its problems to scale. With respect of J2SE imposes a huge load of low
level implementation which should be avoided if possible using what is already
available in existing toolkits. Finally, we consider that proposed Web Services standards
are still immature and many lack any reference implementation, what will lead to a high
implementation risk and probably will require a lot of implementation effort. However,
basic Web Services standards like SOAP and WSDL, offer a good deal of
interoperability and will therefore still considered in the implementation.

A condensed view of all requirements, in functional, technical and development
views is obtained considering the following criteria:

� Modularity to achieve architectural flexibility required to implement the
Catallactic middleware into different platforms and using diverse middleware
toolkits

� Amenability: The middleware toolkit should be able to cover as much as
possible of the ALN domains, like Grid, P2P and CDN

� Performance & Scalability: The middleware toolkit should allow the
organization of a huge number of software agents in a decentralized way, and
their interactions.

� Completeness: The set of functionalities provided by the middleware toolkit
should allow covering as much as possible of the desired requirements of the
P2P Agent Layer).

� Development: In order to support the CATNETS middleware development, the
middleware toolkits should provide be mature, have a rich set of development
tools and good documentation.

Figure 13 shows an illustration of this unified view. Each of the pentagon axis
represents one of the criteria. For each criteria the two middleware toolkits best
covering it are indicated.

30

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Performance
& Scalability
•DIET
•JXTA

Modularity
•J2SE
•DIET

Completeness
•OGSA/WSRF
•JXTA

Amenability
•WS
•OGSA/WSRF

Development
•WS
•Java

Architectural
flexibility

Richness of
functionalities

Susceptible for
implementation
in ALN scenarios

Maturity and
Richness of
development
tools

Decentralized
management of
huge number
of agents

Performance
& Scalability
•DIET
•JXTA

Modularity
•J2SE
•DIET

Completeness
•OGSA/WSRF
•JXTA

Amenability
•WS
•OGSA/WSRF

Development
•WS
•Java

Architectural
flexibility

Richness of
functionalities

Susceptible for
implementation
in ALN scenarios

Maturity and
Richness of
development
tools

Decentralized
management of
huge number
of agents

Figure 13 - Condensed view of the key middleware toolkit evaluation criteria

It can be seen in the previous figure that CATNETS middleware will be composition of
different middleware toolkits, like DIET with JXTA and WSRF/OGSA, which achieve
a good balance between the functional and non functional requirements.

Tests we carried out on middleware toolkits confirm the feasibility of this composition,
in the sense that we could integrate JXTA Discovery with the DIET Agents platform.
Also the invocation of Grid Services from Java applications using the Java Globus API
has been tested.

The actual composition of the “proof of concept” middleware depends on the
characteristics of the application to be used in CATNETS. Once the requirements
imposed by such application are determined, middleware toolkits can be matched with
application requirements.

3.6.2 Implementation approach
Previously to any implementation effort, an extensive survey on implementation tools
has been conveyed. A detailed description of the process and its results is described in
annex D “Middleware toolkits evaluation”. The middleware was implemented as a set
of simple, specialized DIET agents. The details on the interaction of these agents are
organized in a way that resembles the separation of concerns proposed by the
architecture, as is shown in Figure 14. Framework agents supports the basic functions
needed to implement economic algorithms, like access to markets. Peer Agent Layer
agents implement the low level functionalities to support system execution. Service
Provider agents interface with the implementation platforms (JXTA and GT4).

The Overlay Network, Object Discovery and Communication functions where
implemented using JXTA Peer Resolver Protocol in a network of Rendezvous Peers
that uses a DHT to maintain and route messages among nodes [TAP03]. The

31

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

management of local resources, in this case services offered by the service providers,
uses the WSRF framework offered by GT4.

In the proposed implementation, Trading Agents implementing economic algorithms
share the supporting agents from lower levels. This separation allows for scalability as
the number of supporting agents can be dynamically adapted to workload. This
separation also offers location transparency for agents.

Object
Discovery

<<DIET AGENT>>

Trading Agent
<<DIET AGENT>>

<<DIET AGENT>>
JXTA WSRF Service

Provider

<<DIET AGENT>>
GT4 WSRF

Market
<<DIET AGENT>>

Communication
<<DIET AGENT>>

Query Resource,
Register Owner

Advertise, Search

queryResourceProperties
setResourceProperties

Register Handler,
Query. Response

SetProperty, Query

Multicast,
Register Listener

Resource
Management

<<DIET AGENT>>

Economic Algorithms

Framework

Peer Agent Layer

Implementation Platform

Register Resolver,
Query

Registerhandler
SendQuery
SendResponse

JXTA Service
Provider

HandleQuery,
HandleResponse

Handle Query

Handle Message

Object
Discovery

<<DIET AGENT>>
Object

Discovery

<<DIET AGENT>>

Trading Agent
<<DIET AGENT>>

Trading Agent
<<DIET AGENT>>

<<DIET AGENT>>
JXTA WSRF Service

Provider

<<DIET AGENT>>
WSRF Service

Provider

<<DIET AGENT>>
GT4 WSRF

Market
<<DIET AGENT>>

Communication
<<DIET AGENT>>

Communication
<<DIET AGENT>>

Query Resource,
Register Owner

Advertise, Search

queryResourceProperties
setResourceProperties

Register Handler,
Query. Response

SetProperty, Query

Multicast,
Register Listener

Resource
Management

<<DIET AGENT>>
Resource

Management

<<DIET AGENT>>

Economic Algorithms

Framework

Peer Agent Layer

Implementation Platform

Register Resolver,
Query

Registerhandler
SendQuery
SendResponse

JXTA Service
Provider

HandleQuery,
HandleResponse

Handle Query

Handle Message

Figure 14 - Organisation of middleware components

3.6.3 Implementation of P2P Agent Communication Layer
The current implementation uses the JXTA platform to maintain a self-organizing
overlay network. JXTA has been selected for P2P communication for its architectural
flexibility and the rich set of features offered by such a large community-oriented
project.

P2P communication in CATNETS requires both high scalability and complex queries
resolution, which is currently beyond the state of the art in P2P Search. We expect to
leverage current simulation results [SSPS05] and exploratory research on P2P search
[LiWu05], but considering the features of currently available toolkits for P2P discovery,
we decided to implement our P2P communications using JXTA Resolver Service. This
service allows for complex queries resolution better than the higher level JXTA
Discovery Service. We decided to schedule for a latter stage in the project the
introduction of novel query diffusion algorithms on the self-organized JXTA topology,
leading to a more efficient message routing and re-propagation schemes and resulting in
the required high scalability level.

The JXTA ResolverService is used to implement the following functionalities:

� Multicast of a query with responses

� Multicast of messages (no response)

32

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� Handle queries sent by other nodes and send back responses to the issuer

Figure 15 shows a scenario where a QueryIssuer can multicast a query requesting a
response for nearby (according to the overlay network structure) nodes.

Query
Issuer Comm

Query
Resolver

(4) SendQuery(“Group”,Query)

Comm.

(1) RegisterListener(“Group”)

(5) SendQuery (“Group”,Query)

(7)SendQuery(destiationNode, “Group”, Query)

(11) Response(MulticastId,Msg)

(8) ProcessQuery(“Group”, Query)

(12)SendResponse(“Group”,Response)

(9) Resolve Query

(16) Responses
(15) Co llect responses

(3)RegisterFilter (“Group”)

[For all neighbor nodes]

(13) SendRespone(originatingNode“Group”,Response)

(17) Propagate

[if query must be propagated]
(18) SendQuery(“”Group,Query)

JXTA

(2) RegisterHandler(“Group”)

Node
boundary

(14) response

(6) Register JXTA Handler
To process resposnes to query

JXTA

(10) Process
Query

Query
Issuer Comm

Query
Resolver

(4) SendQuery(“Group”,Query)

Comm.

(1) RegisterListener(“Group”)

(5) SendQuery (“Group”,Query)

(7)SendQuery(destiationNode, “Group”, Query)

(11) Response(MulticastId,Msg)

(8) ProcessQuery(“Group”, Query)

(12)SendResponse(“Group”,Response)

(9) Resolve Query

(16) Responses
(15) Co llect responses

(3)RegisterFilter (“Group”)

[For all neighbor nodes]

(13) SendRespone(originatingNode“Group”,Response)

(17) Propagate

[if query must be propagated]
(18) SendQuery(“”Group,Query)

JXTA

(2) RegisterHandler(“Group”)

Node
boundary

(14) response

(6) Register JXTA Handler
To process resposnes to query

JXTA

(10) Process
Query

Figure 15 - Query resolution using multicast with response service

The Query Resolver (QR) registers in the Communications Service (CS) as a listener to
receive queries multicasts directed to a given group. CS registers registers in JXTA a
QueryProcessing handler to process incoming queries directed to the group.

Query Issuer request a query to by multicasted to a given group. The Communications
Service send a query message to each neighbour using the JXTA ResolverService.

On each node, the QueryProcessing JXTA Handler registered for the group receives the
query and forwards it to the Communication Service, which in turn passes it to any
registered listener.

Listener process the query and send it back the response correlated to the received query
to the requesting node, where the Communication Service gathers response Messages
from all remote nodes, composes a response and sends it back to the Query Issuer.

On each target node, after processing the query, the Communication Service depending
on multicast options and query TLL, will propagate or not the query to nearby nodes.
Also, if during this process a duplicated query message is received, the Communication
Service discards the message.

33

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

The proposed model of the multicast process can be optimized at the routing level to
improve the scalability reducing number of messages needed (by means of tree-based
broadcast models and some caching of results), and the efficiency of the query matching
efficiency using heuristics that drives the diffusion of query messages (based on past
results, for example).

3.6.4 GT4 as Query Resolver

So far we have been exploring the integration of the P2P communication mechanism
described in the previous section with GT4 information services, in order to provide
Grid services P2P search mechanism. We use GT4 as a resolver for queries on services
and resources. The local resource manager gets registered in its local market as a
resolver for incoming request related to services and resources. The Resource Manager
translates the query coming from the P2P communication layer into an Xpath
expression suitable for a WSRF-query to be issued against the targeted Grid Services.

Figure 16 shows the interaction between the middleware components and base platform
GT4 in order to address resource management. It is important to remember that queries
arrive to local nodes in a P2P fashion and all the query flow is managed as depicted in
figure 15. Figure 16 just details the concrete resource management issues for a Grid
environment using GT4 and ganglia. This basic resource management setting will be
modified in next development iterations in order to better use the GT4 Information
Services tools.

R e s o u rc e S e rv ic e
(G T 4 /J a v a W S)

B a s ic S e rv ic eB a s ic S e rv ic e R e s o u rc e A g e n tR e s o u rc e A g e n t

G r id C o n ta in e r

1 1

3

9

1

4

2

L o c a l M a rk e t A g e n tL o c a l M a rk e t A g e n t

R e s o u rc e

M a n a g e r

A : R e s o u rc e P ro p e r t ie s
In d e x

B : R e s o u rc e d y n a m ic
m o n ito r in g

G a n g lia
M o n ito r in g

6

1 0

1 3

7

8

5

1 2

R e s o u rc e O b je c t

Figure 16 – Resource Management

34

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

1. Query arrives to Local Market agent, previously registered as resolver
2. Query resource manager to perform function A, providing access to resource

properties of registered GT4 Resoruces
3. Query resource properties on GT4 resource (Xpath)
4. Answer with resource properties values
5. Provide LocalMarketAgent with query answers
6. Instantiate ResourceAgent to negotiate for the resource:

InstantiateResourceAgent(resource)
7. Query resource object for dynamic resource properties in order to set resource

prices
8. Query ResourceManager to perform function B, querying for dynamic

properties of a given resource
9. Query dynamic resource properties of resource using ganglia monitoring
10. Answer with dynamic resource properties values
11. Provide resource object with dynamic resource properties values
12. Return dynamic resource properties values to Requesting ResourceAgent
13. Perform negotiation (steps from 7 to 12 can be performed again at any step

during negotiation process).

35

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

4 Integration of middleware and Cat-COVITE
application

4.1 Application and Catallactic middleware interaction
description

4.1.1 Logical view
In this section we present the logical architecture of the integration between the
application and the middleware, describing the flow of information between the
components. Figure 17 depicts at a high level view of the architecture, highlighting the
placement of logical components along the three layers, the application layer, the
catallactic middleware layer and the Base platform layer, as explained in Chapter 3.

Figure 17 – Integration of Catallactic Middleware and Cat-COVITE Grid Application

At the application layer, the application must provide an interface to the middleware
which must issue the requests for services to the middleware and use the references to
service instances provided by the middleware to execute such services.

At the middleware layer, a set of agents provide the capabilities to negotiate for services
and the resources needed to execute them. The Complex Service Agent acting on behalf
of the application initiates the negotiation. Basic Service and Resource agents manage
the negotiation for services and resources, respectively. Also, a Service Factory in
provided to instantiate the service on the execution environment selected during the
negotiation process.

Client Query Builder

MasterGridService

QueryServiceFactory
(GT4/JavaWS)

ComplexService
Agent

Application

CATNETS Middleware

Resource
(GT4/JavaWS)

BasicServi
ceAgent

ResourceAgent

Base Platform

1

2 10
QueryServiceInstance

(GT4/JavaWS)

3 9

4

5

6

7

8

Catallactic
Access Point

DB

36

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Finally, at the Base Platform layer, a Resource is created to manage the allocation of
resources to the service. This resource represents the “state” of the service from the
perspective of the middleware (notice, this doesn’t mean the service is statefull from the
perspective of the application).

The flow of information among the logical components can be summarized as follows:

1. Client issues a request to the application

2. Application builds a query and requests the execution of query to the Master Grid
Service (MGS)

3. MSG requests to the Catallactic Access Point a Query Service to execute the query

4. Complex Service Agent starts the negotiation with different Basic Service Agents,
each representing an instance of the Query Service on a different container.

5. Each Basic Service Agent negotiates with the resource agent(s) for the resource(s)
needed to execute the query. Basic Service Agent uses the terms agreed with the
Resource Agent to negotiate with the Complex Service Agent.

6. When an agreement with a Basic Service is reached, the Resource Agent instantiate
a Resource to keep track of the allocated resources and returns to the Basic Service
Agent a handle for this resource.

7. Basic Service Agent uses the Query Service Factory to instantiate the Query Service
on the selected GT4 container

8. Basic Service Agent returns to the Complex Service Agent the reference to the
newly instantiated Query Service and the related resource(s)

9. The reference to the Query Service is returned to the MSG, which uses it to invoke
the service, passing the query to be executed.

10. Query Service is invoked and results are returned to the application.

4.1.2 Physical Deployment on GT4 containers
The logical architecture depicted in the previous section can be implemented in different
ways depending on the architecture of the application and the base platform. In this
section we present a specific implementation architecture on a GT4 based platform.
Figure 18 shows the proposed physical distribution of the application and middleware
components.

In this architecture some assumptions are made. First, the services are previously
deployed on a set of GT4 containers. Second, the only “resource” considered in the
negotiation are the “rights” to execute the service on a specific container. Finally, the
service can be instantiated on a container using a generic factory.

The Application resides in a host (or series of hosts) where also resides the Master Grid
Service (interface with the middleware) and the Complex Service Agent, which
represents the application in the negotiation process. On each Grid Container (GT4)

37

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

where the Query Service is deployed, resides the corresponding Basic Service Agent,
which negotiates with the Complex Service Agent for access to the Query Service. In
this container also resides the Resource Agent, which negotiates with the Service Agent
for the rights to execute the Query Service in this container. Finally, a Resource is
created as result of the negotiation process, which represents the “rights” to execute the
service in this container.

Client

Application
CatnetsClientApp

MasterGridService

Com plexService
Agent

QueryServiceFactory
(GT4/JavaW S)

ResourceService
(GT4/JavaW S)

ServiceCopyAgent ResourceAgent

QueryServiceInstance
(GT4/JavaW S)

Application Host Grid Container

QueryServiceFactory
(GT4/JavaW S)

ResourceService
(GT4/JavaW S)

ResourceAgent

Grid Container

ServiceCopyAgent

Catallactic
Access Point

Figure 18 – Physical deployment of application and middleware components

4.2 Use cases – description, flow diagrams, sequence
diagrams, actions

Three use cases are to be taken into consideration:

1. Complex Service agent contacts Basic Services on the Service Market to requesting
plain resources for a limited time to deal with execution of the application service (a
query job service). The first scenario is about just plain service brokers, as Basic
Services, which find plain resources or bundle of resources on the resource market.
The application has to have the permission to deploy and instantiate instances of
Grid Service Handles (GSHs) services on these resources in order to deal with the
application job request.

2. Complex Service agent contacts Basic Services on the Service Market to requesting
query job execution services. Basic Services will request resources, on the Resource
Market, having already available application service oriented instances (Grid
Service Handle - GSH). These GSHs will execute the query job initiated by the
client input request and distributed by the Master Grid Service via the
QueryServiceInstance (see Figure 17).

3. Complex Service contacts Basic Services to requesting the query job execution
service. Complex Service look up in the local Service Registry to see if there are
local service instances (GSHs) – Basic Services, with bundled resources that can
deal with the application job execution (query job).

38

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

1. Use case 1

Basic Services are just plain services which find resources or bundle of resources on the
Resource Market. The following two sub-scenarios could be further consider:

a) The application has to have the permission to deploy and instantiate instances of
application services (GSHs) on these resources. In the service market, the tasks of
Basic Services will basically be of offering resources or bundle of resources at the
requested parameters or attributes specified by the Complex Service (e.g. numbers
of CPUs, type of CPUs, period of time, price etc.). In this scenario, the XML
messages between the Complex Service and the Basic Service could have two sets
of attributes, one related to the service requests, and the other related to the resource
requests.

b) The Basic Services have to have the permission to deploy and instantiate instances
of Grid Service Handles (GSHs) services on these resources in order to deal with the
application job request. In this scenario, the XML messages between the Complex
Service and Basic Service could have one set of attributes related to the job
execution of a query job service.

Figure 19 – Flow diagram – use case 1

Glossary:

� Catallactic Access Point (CAP) = access point for the “on-demand” application
requests of job execution

� Complex Service (CS) = brokers that offer basic services or bundle of basic services

� Basic Service (BS) = brokers that offer plain resource or bundle of resources

� Basic Service Agents = agents acting on behalf of Basic Services

Client

Cat-COVITE
(MGS)

Complex
Service

Resource
Agent1

Resource
Agent2

Resource
Agent3

Query Job ExecutionNegotiation messages
Resource1

Resource2

Resource3

Resource4

Resource5

Input Query format

Input Search Criteria

Q
uery

Message in XML
format (to make
use of WS-
Agreement)

Service Market Resource Market

Negotiates with
Service Copy
Agents

1. Negotiation messages

Query Job Service
Basic Service
(BS)1

BS Agent1

BS2

BS3

BS Agent2

BS Agent3

Catallactic
Access
Point

2. Deployment of GSH
3. Pass the Query Job

39

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� Resource Agents = Agents acting on behalf of a resource or bundle of resources (in
the Cat-COVITE application example the bundle consist of machine and database),
which negotiate with Basic Service Agents

The flow of actions among the logical components is shown in Figure 19, while Figure
20 presents an UML sequence diagram of the interaction between application and
middleware.

The flow of information is summarized as follows:

1. Client inputs a search criterion.

2. Cat-COVITE (MGS - “left side”) transforms the search criteria in a query format.

3. Cat-COVITE (MGS – “right side”) contacts the Catallactic Access Point, via a
XML message, requesting a complex job execution.

4. On the Service Market – Complex Service Agent negotiates with different Basic
Service Agents (which offer only plain resources) to find resources to execute the
requested by the application.

5. On the Resource Market – Basic Service Agents negotiate with Resource Agents to
buy resources.

6. Resources are embedded within the application, through the deployment of the Grid
Service Handles, which execute the query job based on the client search criteria.

Figure 20 – Use case 1 - UML Sequence diagram of the interaction between Cat-
COVITE application and middleware

40

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

2. Use case 2
The flow of actions among the logical components is shown in Figure 21, while Figure
22 presents an UML sequence diagram of the interaction between application and
middleware. This use case differs than use case 1 as the resources have already
deployed services needed by the application.

Figure 21 – Flow diagram - use case 2

Glossary:

� Catallactic Access Point = access point for the “on-demand” application requests

� Service Copies = Offer a Query Job Service

� Basic Service Agents = Agents acting on behalf of Basic Services

� Resource Agents = Agents acting on behalf of a resource or bundle of resources
(identified by its IP addresses), which negotiate with the Basic Service Agents

� EPR = End point reference is the address of the particular resource

The flow of information is summarized as follows:

1. Client inputs a search criterion.

2. Cat-COVITE (MGS - “left side”) transforms the search criteria in a query format.

3. Cat-COVITE (MGS – “right side”) contacts the Catallactic Access Point, via a
XML message, requesting a Query Job Service.

4. On the Service Market – Complex Service Agent negotiates with different Basic
Service Agents, which offer Query Job Services.

5. On the Resource Market – Basic Service Agents negotiate with Resource Agents to
buy resources to executing the job.

Client Resource
Agent1

Resource
Agent2

Resource
Agent3

Query Job ExecutionQuery Job Service
EPR1

Negotiation messages

Resource1

EPR2
Resource2

EPR3
Resource3

EPR4
Resource4

EPR5
Resource5

Input Query format

Input Search Criteria

Q
uery

 WS-Agreement
message

Service Market
Resource Market

Negotiates with
Service Copy
Agents

Pass the Query Job

Negotiation messages
BasicService
(BS)1

BS Agent1

BS2

BS3

BS Agent2

BS Agent3

Catallactic
Access
Point

Cat-COVITE
(MGS)

Complex
Service

41

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

6. The application pass the query job to the query service instance and distributes the
search job on the resources bought from the resource market.

Figure 22 – Use case 2 - UML Sequence diagram of the interaction between Cat-
COVITE application and middleware

3. Use case 3

The flow of actions among the logical components is shown in Figure 23. The main
difference of this use case in comparison with the other two is that there is use the local
site monitor to look up locally for resources availability.

Local Site Monitor
Resource Registry
Query Job Execution

Figure 23 – Flow diagram - use case 3

Client

Cat-COVITE
(MGS)

EPR1
Resource1

EPR2
Resource2

EPR3
Resource3

EPR4
Resource4

Query Job Service
Local Site Monitor Service Registry

EPR5
Resource5

1. Lookup in the Site
Monitor Service
Registry

Input Query format

Input Search Criteria

Q
uery

Message in
XML format (to
make use of
WS-Agreement)

Query Job Service

2. Pass the Query Job

bundles

Local Site

BasicService
(BS)1 bundles

BS2

BS3

Catallactic
Access
Point

Complex
Service

42

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Glossary:

� Catallactic Access Point = access point for the “on-demand” application requests

� Basic Service = Offer a Query Job Service

� Basic Service Agents = Agents acting on behalf of Basic Services

� EPR = End point reference is the address of the particular resource

The flow of information is summarized as follows:

1. Client inputs a search criterion.

2. Cat-COVITE (MGS - “left side”) transforms the search criteria in a query format.

3. Cat-COVITE (MGS – “right side”) contacts the Catallactic Access Point, via a
XML message, requesting a Query Job Service.

4. On the Local Site Monitor - Complex Service Agent lookup in the Local Site
Monitor Service Repository to choose one of the Basic Services, which offer Query
Job Service, based on the parameters requested by the application.

5. Basic Services have already resources or bundle of resources with instances to
execute the query job, or they lookup in the Local Site Monitor Resource Repository
to choose plain resources or bundle of resources to be used by the application (as in
use case 1).

6. The application pass the query job to the query service instance, which offers the
query job service, and distributes the search job to the instances on the resources.

At the initial development stage, we consider use case 2. All initial implementations of
the prototype follow this pattern.

4.3 Concepts and mechanisms for the application
implementation – requirements

At the initial stage of the application prototype development, two models are
considered. Figure 7 details a diagram integration of Catallactic middleware and Cat-
COVITE Grid Application. The prototype application is based on GT4 services, as the
first model, and Java Web Services, as the second model.

The first prototype application is based on the following information flow: the MGS
pass the query string in xml format to the QueryService (JavaWS/GT4 Service); this
contacts the wrapper .NET Web Service, on the supplier site, and passes the xml string
query. On the supplier site, the query runs over the database and returns the results to
the QueryService, which pass back the results to the client. The results returned from
the .NET Web Service wrapper is formatted in the document literal encoding. GT4
service uses this format too. Java Web Service uses RPC format encoding. The problem
of interoperability between GT4/.NET Web Service and Java Web Service is the matter
of marshalling / un-marshalling issue.

43

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

1. Initial prototype application based on GT4 services

In the case of the first model, using the GT4 services, below are the meanings of the
first prototype files:

� Search.java is the Resource. This class actually manages all the actions we are going
to take with regard to the Search action (the Query job), such as setting property
values.

� SearchHome.java is the ResourceHome. This class is responsible: 1) for creating: a)
single instance of the resource (in the case of singleton), or b) multiple instances of
the resources (in the case of multiple resources); and 2) for helping locate a specific
instance, as requested.

� SearchService is the actual web service that interacts with the resource. This class
contains the methods exposed by the web service (in our case the "write" method,
which tasks is to accept a string as an input and return a string), when is invoked by
the "service client".

� search_port_type.wsdl is the WSDL file that defines what the service can do. It also
defines the resource properties document for the resource.

� deploy-jndi-config.wsdd is the file which explains how to link the service with the
actual class that implements it.

� deploy-client.wsdd - this file is not actually used, but has to be there.
� NStoPkg.properties - also needed, but actually is empty. This file specifies how to

derive the package names from the namespaces if they need to be different from
what can be derived from the service's WSDL file.

� build.xml - contains the instruction that guide the entire build process.

Many of these files are standard files that come with the WSRF. Below are examples of
some of these files and the meaning in the context of the first prototype application.

a. Create the WSDL file

The WSDL file has an important role as it contains information of how we define what
the prototype expects to see and what it will return. The WSDL file defines the message
pattern used by the WS-Resource too. In annex E “Application framework – concepts
and mechanisms” is presented the detailed WSDL file.

This file creates a basic WS-Resource with a resource properties document called
SearchResourceProperties and the basic operations required of WS-Resource:
GetResourceProperty, Write and Create. Create operation is responsible for creating
the resources via the service factory, while Write operation is responsible for passing the
query from the MGS to the .NET Web Service wrapper on the supplier side, as well as
keeping the result as a state information.

b. Create the service

The service provides a way to access the capabilities built in to a WS-Resource. In
annex E “Application framework – concepts and mechanisms” is presented the file code
of the query service.

44

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

c. Create the constants

One goal of the prototype application is to have a code that it is easily translatable.
There is an easy way by creating this object which keeps track of all constants defined
within the prototype.
package org.catnets.tutorial.search;
import javax.xml.namespace.QName;

public interface SearchConstants
{
 static final String SEARCH_NS= "http://tutorial.catnets.org/search";
 static final QName RP_SET = new QName(SEARCH_NS, "SearchResourceProperties");
 static final QName MESSAGE_RP = new QName(SEARCH_NS, "StatusMessage");
 static final QName SEARCH_RP = new QName(SEARCH_NS, "CurrentSearch");
}

All these above examples are only a part of the first Cat-COVITE application prototype
implementation and the interaction with the Catallactic middleware. This first prototype
presents a base of further integration and development of a Catallatic enabled Cat-
COVITE application prototype.

2. Initial prototype application based on the Java Web Services

The architecture and functionalities (see Figure 7) of this model are similar to the other
presented above using the GT4 services. The interoperability between a Java Web
Service and a .NET Web Service is solve using marshalling and un-marshalling
concepts, as Java Web Service uses RPC format encoding, while .NET Web Service
uses the document literal format.

4.4 WS-Agreement - concepts and requirements
An agreement consists of several parts. According with the WS-Agreement draft [WS-
Ag05], these are:

Figure 24 - Structure of an agreement [WS-Ag05]

45

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

The XML representation of an agreement or an agreement creation offer has the
following structure:
<wsag:Agreement>
 <wsag:Name>
 xs:NCName
 </wsag:Name> ?
 <wsag:AgreementContext>
 wsag:AgreementContextType
 </wsag:AgreementContext>
 <wsag:Terms>
 wsag:TermCompositorType
 </wsag:Terms>
</wsag:Agreement>

The section of the agreement name is optional. The agreement context includes the
parties to an agreement, reference to the service(s) provided in support of the
agreement, the lifetime of the agreement. The next section contains the agreement
terms, which describe the agreement itself, and could contain:

� The service description terms, which provide information needed to instantiate or
otherwise identify a service to which this agreement pertains

� The guarantee terms, which specify the service levels that the parties are agreeing
to.

The example scenario in terms of the Cat-COVITE application proposed for the
CATNETS prototype interacting with the middleware it is as: “I (MGS) need to run a
query search job. I (MGS) send an Agreement Offer (AO1), based on the agreement
template downloaded from the Catallactic Access Point, to the Catallactic Access Point
to execute a query job. I (MGS) need, for example, NoOfQueriesInPeriodOfTime,
ResponseTimePerQuery, PeriodOfUsage, and PayForService. The Complex Service
Agent, acting on behalf of the Complex Service chosen by the Catallactic Access Point,
negotiates with the Basic Service Agents (in the CATNETS environment) for query
services to fulfil the job”.

MasterGridService (MGS) receives the client request for executing a query over a
supplier database (see Figure 21 – Flow diagram – use case 2). The client’s input search
criterion is transformed by the application (via the MGS) in an input query in the
following format:

SELECT IDProduct, ManufacturerName, ProductName, Price FROM Product ORDER
BY Price DESC

The MGS creates an xml string format as follows:

<?xml version=”1.0”?><searchCriteria> SELECT IDProduct, ManufacturerName,
ProductName, Price FROM Product ORDER BY Price DESC</searchCriteria>

This is the xml string message that MGS is passing to the SearcServiceInstance in order
to fulfil the client requirements (searching for products on the supplier databases).

The MGS contacts the Catallactic Access Point in order to finding resource to execute
the search. The communication between the MGS and Catallactic Access Point is WS-
Agreement based.

46

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Technical Specifications of the request from the MGS to the Catallactic Access
Point:

1. MGS looks for a service provider which offers query service (services with the
possibilities of running queries).

2. (WHAT TO EXECUTE) - to run a query job.

The query is of this format:

SELECT IDProduct, ManufacturerName, ProductName, Price FROM Product ORDER
BY Price DESC

The query job message passed by the MGS will be of an xml format as follows:

 <?xml version=”1.0”?><searchCriteria> SELECT IDProduct, ManufacturerName,
ProductName, Price FROM Product ORDER BY Price DESC</searchCriteria>

3. (WHERE TO EXECUTE) the supplier(s) database address(es) (URLs). (This will be
part of the next stage of the prototype development). This will be an xml string
containing the URLs of the supplier database to search for according with the input
search criterion. The search will be distributed only to suppliers who supply the
products that the client is interested in.

The Catallactic Access Point is an agreement provider, while the MGS “right side” is an
agreement initiator. The MGS initiates an agreement offer by retrieving the agreement
template, filling it in and sending it back to the Catallactic Access Point. The
Catallactic Access Point, as the agreement provider, could accept or deny. If the
agreement is denied than the MGS “right side” has to submit a new agreement offer that
will be analysed by the Catallactic Access Point.

4. Provides the URL of the input file (the query in xml string format)

5. Provides the URL of the output file (where the result of the search - in xml string
format- should be returned)

Quality of Service parameters

Example of what the MGS is interested in and quality of service parameters that a
service provider has to offer in order to fulfil the application tasks:

1. Running minimum “n” number of queries in a period of time.

Example: not less than n = 100 queries / minute

2. Response time not more than “m” seconds per query.

Example: not more than m = 3 seconds / query response time.

3. Period of time “t” of usage of the service.

MGS needs a dedicated service provider for a “t” period of time. Example: t = 8 hours.

47

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

4. Starting time of the use of service. Example: date:hour:minute:second

5. End time of the use of service. Example: date:hour:minute:second

6. The amount of money “a” MGS is willing to pay for the dedicated service
provided

Example: a = 30 £ / 8 hours

Agreement Template

The agreement template specifies the service description elements that are allowed by
the factory which advertises it. In the annex E “Application framework – concepts and
mechanisms”, point E.3, are presented: an example format of an agreement template
and an agreement template lite.

Agreement Offer

In the annex E “Application framework – concepts and mechanisms”, point E.4, are
presented an example of an agreement offer that is compliant with the agreement
template presented in annex E.3, and an agreement offer lite. This agreement offer is
initiated by the agreement initiator (the MGS).

There are guarantees which express constraints on the time by which QueryJob service
must start and must finish. The metric is refers to is job:startTime and job:endTime
which are the type of xsd:dateTime.

Agreement

The agreement acceptance is the same as the agreement offer if the agreement provider
accepts the conditions of the offer. If the agreement provider doesn’t accept the offer,
the agreement initiator has to send another agreement offer.

48

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

5 Conclusion and further work

5.1 Impact of the Catallactic middleware in the application.
The first implementation of a real system, as COVITE prototype, with a Catallactic
mechanism, has raised interesting conclusions outlined below:

� COVITE prototype has been designed and developed as a centralised system,
where all services and resources are under one authority control. All VOs
created via the central system use the resources of the authority. A decentralised
solution of the COVITE prototype will create great benefits to such system, as
the demand of services and resources from VOs will be better solved via the
CATNETS markets. The Cat-COVITE prototype will follow these patterns.

� The CATNETS markets expect to provide VOs the possibility to gain profits out
of their spare resources and services.

� The Catallactic mechanism expects to help systems in discovering and selecting
resources and services on demand and just in time, as application processes can
make use of third parties services or can demand more and more resources.

5.2 Conclusions on the adaptation of the middleware to an
existent application

From this first attempt to integrate the Catallactic middleware to an existent application
(in this case a grid application), we can extract interesting conclusions: First and
foremost we confirm that the proposed architecture captures all the required aspects
from a grid scenario, providing for a natural integration into an existing grid application.
These are the achievements we have identified so far:

� We have succeeded plugging a service/resource discovery and selection
mechanism on a pre-existent grid application. Thus we convert a “classical”
centralized, monolithic data-grid engine into a decentralized, more flexible
Catallaxy-enabled grid application, based on a shared infrastructure (the
middleware).

� We fulfil the requirements described in above sections using standards and
standard tooling. In this sense, undoubtedly WS-Agreement and GT4/WSRF
help lowering modelling and implementation/integration costs.

� In particular the connection application-middleware using the WS-Agreement
has been quite straightforward and did not enforce any architectural change on
the middleware side.

However other issues have been detected as the most problematic, namely the shared
components between application and middleware, and the connection middleware-base
platform:

49

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� There is a need to better abstract the “service component” on the middleware
side in order to alleviate conflicting requirements with application. To that point
we believe that the correct way to proceed is using the WSRF notion of service
instance, which is created following a factory pattern. This factory will be
provided by the middleware as a point of policy enforcement, accounting and
monitoring. There are still some open questions about the management of the
lifecycle of this service/resource instances, as the application might not be
designed to handle them.

� During the integration efforts it has been identified some conflicting roles
assumptions, since application designers supposed that catallactic middleware
would be taking care to some extent of service execution. It is important to stress
the exclusive role of the middleware as a service/resource discovery and
selection tool. From the amenability point of view (broader application of the
middleware to other grid, p2p and CDN applications) it is required a very low
coupling with the application. The middleware should never be providing
application specific services as this would decrease modularity and complicate
any further usage in different scenarios.

� The connection with the base platform is still to be properly designed. To that
point the “resource management” component in the P2P Agent Layer on the
architecture must be further developed. We envisage resource virtualization in
the WSRF context as the main driver for a proper connection middleware-base
platform (on the broad scenario of grid applications).

5.3 Roadmap to first CATNETS prototype - open issues
and future work

An important part of the work on integrating Cat-COVITE application and catallactic
middleware has been accomplished. Several remaining issues will be targeted in the
following months, following this roadmap:

� Implement the lifecycle management for service instances, using the factory
model and WSRF mechanism (e.g. WS-Notificaton)

� Develop a model for computational resources virtualization (e.g. CPU, disk)
using WSRF

� Complete integration and functioning tests.
� Develop measurement components on the middleware
� Define metrics relevant both for middleware and application
� Design experiments and test prototype, extracting and analysing results
� Start next iteration on the prototype evolution, leading to a more complex,

realistic grid scenario
� Further development of the Cat-COVITE application prototype by searching

multiple supplier databases

50

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

6 References
[Bers96] P. Berstain (1996), “Middleware: A Model for Distributed System Services”,
Communications of the ACM, 39(2):86-98

[BuVe04] R. Buyya, S. Venugopal (2004), “The Gridbus Toolkit for Service Oriented
Grid and Utility Computing: An Overview and Status Report, Technical Report,
GRIDS-TR-2004-2”, Grid Computing and Distributed Systems Laboratory, University
of Melbourne, Australia, April 2004.

[Catn03] CATNET project (2003), “Catallaxy Simulation Study, Report No. D2”
http://research.ac.upc.es/catnet/pubs/D2_Simulation_Study.pdf

[Catn04] CATNETS project (2004),”Annex I - Description of Work”, IST-FP6-
003769

[COV04] COVITE project (2004).
http://www.wesc.ac.uk/projectsite/covite/index.html

[D1WP1.1-05] Environmental Analysis for Application Layer Networks (2005),
Deliverable D1, WP1.1, CATNETS project

[Emme00] W. Emmerich (2000), “Software engineering and middleware: a
roadmap”. In Proceedings of the conference on The Future of Software Engineering
(ICSE 2000)

[ERA+03] T. Eymann, M. Reinickke, O. Ardaiz, P. Artigas, F. Freitag, L.
Navarro (2003), “Self-organizing resource allocation for autonomic network”,
Proceedings. 14th International Workshop on Database and Expert Systems
Applications, Germany, 656- 660

[FAvH89] F.A.Hayek, W. Bartley, P. Klein, B. Cadwell – “The collected works of
F.A. Hayek”, University of Chicago Press, 1989

[FKL+99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy “A
Distributed Resource Management Architecture that Supports Advance Reservations
and Co-Allocation”, Intl Workshop on Quality of Service, 1999.

[GGF05] Global Grid Forum (2005), http://www.ggf.org/

[Glob05] http://www.globus.org/

[GRAAP05] Grid Resource Allocation and Agreement Protocol Working Group
(2005), https://forge.gridforum.org/projects/graap-wg

[GSI04] Grid Security Infrastructure (2004), http://www-
unix.globus.org/security/

[HWBM02] C. Hoile, F. Wang, E. Bonsma , P. Marrow (2002), “Core specification
and experiments in DIET: a decentralised ecosystem-inspired mobile agent system “,
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems”, ACM Publishing, 623 – 630

51

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

[IaFo01] A. Iamnitchi, I. T. Foster (2001), “On Fully Decentralized Resource
Discovery in Grid Environments”, Proceedings of the Second International Workshop
on Grid Computing, p.51-62

[J2se05] http://java.sun.com/

[Jade05] http://jade.tilab.com/

[JPB04] Liviu Joita, Jaspreet Singh Pahwa, Pete Burnap, Alex Gray, Omer Rana,
John Miles - "Supporting Collaborative Virtual Organisations in the Construction
Industry via the Grid", Proceedings of the UK e-Science All Hands Meeting 2004,
Nottingham, United Kingdom, 31st August - 3rd September 2004, © EPSRC Sept 2004,
ISBN 1-904425-21-6,
http://www.allhands.org.uk/2004/proceedings/papers/182.pdf

[Jxta05] http://www.jxta.org/

[LHF04] K. Lai, B. A. Huberman, and L. Fine (2004), “Tycoon: A Distributed
Market-based Resource Allocation System,” HP Lab, Palo Alto, Technical Report
cs.DC/0404013, Apr. 2004.

[LiWu05] X. Li and J. Wu, "Searching Techniques in Peer-to-Peer Networks,"
accepted to appear in Handbook of Theoretical and Algorithmic Aspects of Ad Hoc,
Sensor, and Peer-to-Peer Networks, J. Wu (ed.), CRC Press, 2005

[MKL+01] P. Marrow, M. Koubarakis, R.H. van Lengen, F. Valverde-Albacete, E.
Bonsma, J. Cid-Suerio, A.R. Figueiras-Vidal, A. Gallardo-Antolin, C. Hoile, T. Koutris,
H. Molina-Bulla, A. Navia-Vazquez, P. Raftopoulou, N. Skarmeas, C. Tryfonopoulos,
F. Wang, C. Xiruhaki (2001), “Agents in Decentralised Information Ecosystems: The
DIET Approach”. Symposium on Information Agents for E-Commerce, AISB'01
Convention, 21st - 24th March 2001 University of York, United Kingdom

[MKL+02] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja1, J. Pruyne, B.
Richard, S. Rollins ,Z. Xu (2002), “Peer-to-Peer Computing”, HP Laboratories Palo
Alto, Reseach report PL-2002-57

[Mmap04a] MMAPPS Project (2004), “Deliverable 5: Peer-to-Peer Services
Architecture”, September, 2004

[Mmap04b] MMAPPS Project(2004), “Deliverable 27- Final Project Summary
Report”, November 2004

[OGSA03] Open Grid Service Architecture (OGSA) (2003)
http://www.globus.org/toolkit/docs/3.0/physiology.pdf

[P2P02a] P2P Architect Project (2002), “Deliverable D1 - Comprehensive Survey
of contemporary P2P technology”, IST-2001-32708

[P2P02b] P2P Architecture Project (2002), “Deliverable D4 – P2P applications
development process overview”, IST-2001-32708

[Pepi03a] Pepito Project (2003a), “Deliverable D1.1 –Required foundations for
Peer-to-Peer systems”, IST-2001-33234

52

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

[PHP+03] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. P Frank and C.
Chokkareddy (2003), “OCEAN: The Open Computation Exchange and Arbitration
Network, A Market Approach to Meta computing”, In proceedings of the International
Symposium on Parallel and Distributed Computing (ISPDC'03), Oct 2003

[SOAP03] Simple Object Access Protocol (SOAP) Version 1.2, W3C
Recommendation 24 June 2003, World Wide Web Consortium.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/#intro

[SSPS05] Sujoy Basu, Sujata Banerjee, Puneet Sharma, Sung-Ju Lee, NodeWiz
(2005), “ Peer-to-peer Resource Discovery for Grids”, In the 5th IEEE International
Symposium on Cluster Computing and the Grid Cardiff, Wales, UK 9th – 12th May
2005

[TAP03] Traversat, M. Abdelaziz, and E. Pouyoul, Project JXTA: Loosely-
Consistent DHT Rendezvous Walker, Sun Microsystems, Inc.,
http://www.jxta.org/project/www/docs/jxtadht

[VBW05] S. Venugopal, R. Buyya, L. Winton (2005), “A Grid Service Broker for
Scheduling e-Science Applications on Global Data Grids”, Journal of Concurrency and
Computation: Practice and Experience, Wiley Press, USA

[WS-Ag05] Web Services Agreement Specification (WS-Agreement), 28 June 2005
https://forge.gridforum.org/docman2/ViewCategory.php?group_id=71&category_id=65
9

[ZaPa04] F. Zambonelli, V. Parunak (2004), "Towards a Paradigm Change in
Computer Science and Software Engineering: a Synthesis", The Knowledge
Engineering Review, 2004

53

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Annex A – The Architecture Development Process
“As the size and complexity of software systems increases, the design problem goes
beyond the algorithms and data structures of the computation: designing and specifying
the overall system structure emerges as a new kind of problem”. [GaS93]

To address this complexity, a different approach for developing is needed. Architecture
based development focuses on reasoning about the structural issues of a system.
“Structural issues include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of functionality to design
elements; physical distribution; composition of design elements; scaling and
performance; and selection among design alternatives” [GaS93]

The importance of the architecture goes far beyond the simple documentation of
technical elements. According to [BBC+00], the architecture serves as “the blueprint for
both the system and the project developing it” and therefore it helps in the definition of
how the work can be organized. Also, the authors state that the architecture “is the
carrier of system qualities such as performance, modifiability, and security, none of
which can be achieved without a unifying architectural vision”. Finally, it is “a vehicle
for early analysis to make sure that the design approach will yield an acceptable
system”.

Considering the importance of the architecture and its impact in the overall system and
project organization, the main objectives of the architecture design process in
CATNETS project can be summarized as:

� Define a set of common design concepts that bring coherence to the architecture

� Define a set of sound design and implementation principles that assure the
quality of the resulting middleware

� Identify key architectural requirements that allow the evaluation of potential
implementation options, including the adoption of already existing middleware
toolkits and development platforms

� Separate design concerns to facilitate the division of work in the different work
packages, giving each group the freedom to experiment with implementation
options, but avoiding the risk of incompatibilities

� Structure the system in a way that allows future experimentation in specific
areas like negotiation protocols and basic middleware mechanisms and policies
(peer location, resource replication, etcetera) with minimal impact on the rest of
the system

A.1 Architecture Design Process
The architecture design process goes from the system’s requirements to the architecture
specifications. We have adapted the methodological approaches proposed in [HNS99]
and [KaBa99] to define an architecture design process that considers three steps, as
shown in figure A.1.

54

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Analysis

Validation

Elaboration
Architecture

Specifications &
Design Decisions

System
Requirements

Architecture
Requirements and
Design Guidelines

Figure A.1. The Architecture Design Process

The Analysis process translates the various systems requirements to architecture
requirements. It consists of three main tasks:

� Review the functional requirements (described in usage scenarios) that the
architecture must address, along with the nonfunctional requirements
(performance, scalability, security) that it must meet.

� Identify the architectural requirements that will constrain the design options

� Define strategies to deal with identified factors and state design guidelines that
will guide the elaboration phase.

The Elaboration phase consist in the construction of a set of specifications of the
architecture, covering different levels of detail and from diverse perspective, so that the
complexity of the system can be properly reflected to different stakeholders (e.g. project
managers and developers). One important part of the design process is the
documentation of the design decisions that lead to this architecture, so that future
reviewers (architects, developers) can understand the rationale behind those decisions.

Finally, the Validation phase consists in the exploration of different usage scenarios to
verify the compliance of the architecture with the requirements [KABC96].

This process is iterative and it is expected to continue even when the detailed design of
the system is well advanced [KaBa99].

A.2 Architecture Specification
We use a model composed of multiple views or perspectives to describe a software
architecture ([Kruc95]), see Table A.1. Each model covers a set of relevant aspects of
the specification from one stake holder’s point of view (for example, project manager or
developers) during a stage in the development process (for example, design or
implementation). The following table resumes the different architectural views we
consider.

55

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

D
ev

el
op

m
en

t Specifies how code is organized
Defined in terms of software packages and their dependencies
Helps to manage the development process

Lo
gi

ca
l

Specifies what the system does
Defined in terms of logical entities (classes) and their

relationships
Helps to understand the problem and the proposed solution

Agent

Seller

Market

Goods

Buyer

Agent

Seller

Market

Goods

Buyer

D
yn

am
ic

Specifies how functions are distributed at run time
Defined in terms of executable components (processes, threads,

agents) and their interactions
Helps to understand how the system behaves

D
ep

lo
ym

en
t Specifies how software is deployed

Defined in terms of physical components (modules and nodes)
and their references

Helps to manage the system’s operation

Table A.1. Architectural Views

As the initial phase of middleware development focuses on the evaluation of the
implementation alternatives, we have delimited the architecture description to the
identification of the overall organization (Development View) and the identification of
the main functionalities it must cover (a partial Logical View). As we proceed with the
project, the remaining views shall also be covered.

A.3 References
[BBC+00] F. Bachmann, L. Bass, J. Carriere, P. Clements, D. Garlan, J. Ivers, R. Nord,
R. Little (2000), “Software Architecture Documentation in Practice: Documenting
Architectural Layers”, Technical Report, Software Engineering Institute, Carnegie
Mellon University

[GaS93] D. Garlan, M. Shaw (1993), Also published as “An Introduction to Software
Architecture,” Advances in Software Engineering and Knowledge Engineering, Volume
I, edited by V.Ambriola and G.Tortora, World Scientific Publishing Company, New
Jersey

[HNS99] C. Hofmeister, R. Nord, D. Soni (1999), “Applied Software Architecture”,
397 pages, Addison-Wesley Professional 1st edition

[KaBa99] R. Kazman, L. Bass, (1999), “Architecture Based Development”, Software
Engineering Institute, Carnegie Mellon Univertity, Technical report CMU/SEI-99-TR-
007

[KABC96]R. Kazman, G. Abowd , L. Bass, P. Clements (1996), “Scenario-Based
Analysis of Software Architecture”,IEEE Software, 13 (6):47 - 55

[Kru95] P. Kruchten (1995), “Architectural Blueprints—The ´4+1´ View Model of
Software Architecture", IEEE Software 12 (6), 42-5

56

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Annex B – Peer-to-Peer Architectures
In order to support the application within a Catallactic market, it is useful to review
existing architectures that impact on the development of this application. Currently,
many distributed technologies are using a network-based computing style that support
mixed models of the network topologies. The main debate about distributed systems
topologies is focused on the centralized or decentralised systems. Our focus in the
application is on the creation of a decentralised system. Generally, there are a number of
reasons to support such a model:

� there is a need to scale the system to support increased demand of resources and
services;

� there is generally a need to move resources and services closer to their access point;

� to support better fault tolerance and network resilience;

� to enable better sharing of resources and facilitate collaboration.

P2P systems are highly decentralized and distributed, the peers being highly
autonomous, independent and self-organised. In a client-server model, the server
controls and manages the relationship a client has with resources, services and other
clients. The topology within a distributed system can be considered at different levels:
physical, logical, or organizational. Often a centralised system is preferred, as the
advantages of a centralised system are ease of use in the operation, administration and
management of a distributed computing environment. Resources and services can be
administered from a central server, while the functionality can be deployed to
complement the physical structure of the network topology. The decentralised system,
however, provides challenges that have to be addressed: the management of the network
is more difficult, failures are not always detected immediately, response time and
latency issues are difficult to predict in a remote communication. A P2P distributed
system should be able to address these decentralized system issues and try to eliminate
or mitigate them.

Peers in a P2P system are entities used to provide services or to find other peers that can
provide the services requested. A peer can be considered a client when is requesting a
service, and can be considered a server when it is providing a service. The predominant
architecture of a P2P system is a decentralized model augmented with centralised
control nodes at key points, which are important performance characteristics, such as
discovery and content management.

Recently, Grid computing provides an approach for building large-scale and cost-
effective distributed computing infrastructures. Grid computing generally involves the
integration of geographically distributed resources like compute engines, storage, and
data, and enables the virtualization of these distributed computing and data resources to
create a single system image, granting users and applications seamless access to vast IT
capabilities.

57

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Often, the debate between centralised and decentralised systems is fundamentally about
topology, i.e. how the nodes in the system are connected. Four common topologies can
be found in distributed systems:

� Star

� Ring

� Hierarchical

� Mesh

In addition there are hybrid topologies that may also be considered. The most
interesting topologies for a P2P/Grid-enabled application are:

� Centralised + Ring

� Centralised + Decentralised

Minar [Minar02] considers seven properties for evaluating topologies:

� Manageability – evaluating the difficulties of keeping a system working. Updating
and logging are factors to be considered.

� Information coherence: how correct is information within the system? Non-
repudiation and consistency are particular important aspects.

� Extensibility: reaction of the system when grows, especially when more resources
are added.

� Fault Tolerance: reaction of the system when fails. This is a very important criterion
in large distributed systems.

� Security: how hard is it to threaten the system?

� Resistance to lawsuits: how hard is it for an authority to shut down the system? This
property is not important to be considered in the CATNETS project.

� Scalability: how large can the system grow? Scalability is a key advantage of
decentralized systems over centralized, although the reality is more complex.

The list above provides some of the main properties which are often considered in the
preliminary architecture and design, and in decision-making criteria of the application
topology. These criteria are also very useful in the evaluation of advantages or
disadvantages of the decentralized systems (or P2P systems) architecture.

B.1 Star topology
Star topology (Figure B.1), known also as a client-server or centralised topology,
involves connecting each device or node to a central point of control (the server). In this
case, the server makes services available over a network to all clients.

58

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

The main advantage of centralized systems is their simplicity. As all data is
concentrated in one place, centralized systems are easily managed and have no
questions of data consistency or coherence. Centralized systems are also relatively easy
to secure: there is only one host (the central server) that needs to be protected. The
drawback of centralization is that everything is in only one place. If the central server
goes down, everything does. There is no fault tolerance. Centralized systems are also
often hard to extend, resources can only be added to the central system. The scalability
of centralized systems is subtle. Scale is limited by the capacity of the server, and so
centralized systems are often thought of as not scalable.

Nowadays computers are very fast and a single computer can often support all the
demands of its users. Unlike more complex topologies, the scalability of a centralized
system is very easy to measure. When there is a need of complex processes from many
clients to be handled by the server, then a central system is not fast enough to run all
these clients’ requests. [Minar02]

Manageable Yes

Coherent Yes

Extensible No

Fault-Tolerant No

Secure Yes

Scalable ?

Figure B.1 – Start topology [Minar02]

B.2 Ring topology
In a ring topology (Figure B.2), such as a Token Ring, each node is connected to two
other nodes, forming a loop. This topology is based on the concept of passing a single
token around to the computers connected to the ring. Ring systems typically have a
single owner. This concentration gives them many of the same advantages of
centralized systems: they are manageable, coherent, and relatively secure from
tampering.

Manageable Yes

Coherent Yes

Extensible No

Fault-Tolerant Yes

Secure Yes

Scalable Yes

Figure B.2 – Ring topology [Minar02]

59

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

The added complexity of the ring is mitigated by fairly simple rules for propagating
state between the nodes in a ring. But the single-owner restriction means rings are also
not extensible: a user still needs the owner's permission to add a resource into the ring.

The advantages of rings over centralized systems are fault tolerance and scalability. If a
host goes down in a ring, failover logic makes it a simple matter to have another host
cover the problem. Well-designed rings are scalable; one can simply add more hosts to
the ring and expand the capacity. The drawback of the ring topology is that it isn’t used
much anymore for common networks.

B.3 Hierarchical topology
One of the most common topology is the hierarchy (Figure B.3), which provides some
advantages in comparison with the rings. Hierarchical systems are somewhat
manageable in that they have a clear chain of action. But because these systems have
such a broad scope, it can be hard to correct a host with a problem. Coherence is usually
achieved with a cache consistency strategy; effective, but not complete. Hierarchical
systems are extensible in that any host in the system can add data, but the rules of data
management may limit what information can be added. Hierarchical systems are also
more fault-tolerant than centralized systems, but the root is still a single point of failure.
They tend to be harder to secure than centralized systems. If a node high in the
hierarchy is subverted or spoofed, the whole system suffers. And it is not just the root
that is a risk: if data travels up the branches to the root, then leaf nodes may be able to
inject bad information to the system. The primary advantage of hierarchical systems is
their scalability. New nodes can be added at any level to cover for additional workload.
The relative simplicity and openness of hierarchical systems, in addition to their
scalability, make them a desirable option for large distributed Internet systems.

Manageable Partially

Coherent Partially

Extensible Partially

Fault-Tolerant Partially

Secure No

Scalable Yes

Figure B.3 – Hierarchical topology [Minas02]

B.4 Mesh topology
A mesh topology (Figure B.4), also known as a decentralised topology, requires all the
nodes to have dedicated paths to all other nodes on that network. A mesh network
topology also resembles the Internet routing topology. Decentralized systems come
closest to being truly P2P. Examples of decentralised systems are: Gnutella and KaZaA.
The characteristics of such systems are opposite to the centralized systems. These
systems have a tendency to being difficult to manage and data in the system is never
fully authoritative. The security is also an issue as it is very easy for a node to join the
network and start putting bad data into the system. A main advantage of decentralized

60

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

systems is their extensibility. Decentralized systems also tend to be fault-tolerant. The
scalability of decentralized systems is hard to evaluate. In theory, the greater the number
of hosts, the greater the capability offered by the system. In practice, the algorithms
required to keep a decentralized system coherent often carry a lot of overhead. If that
overhead grows with the size of the system, then the system may not scale well.
Scalability of decentralized systems remains an active research topic.

Manageable No

Coherent No

Extensible Yes

Fault-Tolerant Yes

Secure No

Scalable Maybe

Figure B.4 – Mesh topology [Minar02]

B.5 Centralised + Ring
The hybrid system takes advantages of using a ring topology for its central server, with
the benefit of simplicity of centralisation and redundancy of a ring. Such systems are
easy to managed and secure. The main advantage of using a ring is that server adds
fault-tolerance and scalability.

Manageable Yes

Coherent Yes

Extensible No

Fault-Tolerant Yes

Secure Yes

Scalable Yes

Figure B.5 – Centralised + Ring topology [Minar02]

B.6 Centralised + Decentralised
A system, as shown in Figure B.6, can involve components that are centralized and
others that are not. Decentralization plays an important role to the extensibility and
fault-tolerance of the system. The partial centralization makes the system more coherent
than a purely decentralized system, as there are relatively fewer hosts that are holding
authoritative data. Manageability is as difficult as a decentralized system, and the
system is no more secure than any other decentralized system.

61

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Manageable No

Coherent Partially

Extensible Yes

Fault-Tolerant Yes

Secure Partially

Scalable Apparently

Figure B.6 - Centralised + Decentralised topology [Minar02]

Nowadays the security within such a system may be enhanced by the use of X509-based
digital certificates, as used in the Grid Security Infrastructure (GSI), or through the
description of security credentials via the Security Assertion Markup Language
(SAML), for instance. The most important advantage is the scalability of this hybrid.

Most peers have a centralized relationship to a “super node”, forwarding all file queries
to this server. But instead of super nodes being standalone servers, they band
themselves together in a Gnutella-like decentralized network, propagating queries.
Internet email also shows this kind of hybrid topology. Mail clients have a centralized
relationship with a specific mail server, but mail servers themselves share email in a
decentralized fashion.

We make use of a decentralized application architecture in this project, and one which
has been adapted from a previous centralized version.

B.7 References
[Minar02] Nelson Minar, “Distributed Systems Topologies: Part 2”, 08.01.2002
http://www.openp2p.com/pub/a/p2p/2002/01/08/p2p_topologies_pt2.html

62

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Annex C – Specifications of P2P Agent layer
The P2P Agent Layer encompasses the basic functionalities that supports all the
Catallactic middleware, providing the basic mechanism that will allow the system to
self-organize according to the policies implemented in the upper layers ([EAB+99],
[BJM04]). Therefore, this layer has the responsibility to address the critical
requirements of interoperability, flexibility and scalability required by the project. In
this section we will offer a detailed explanation of this layer, its functionalities and the
requirements it should fulfil.

The P2P Agent layer also provides a rich execution interface to speed the
implementation of the Catallactic agents, providing a set of common functions and
complementing the base middleware when necessary. This layer also isolates the rest of
the Catallactic middleware from the particularities of the underlying base middleware,
promoting more portable components in the upper layers.

The P2P Agent Layer is built based on the basic abstraction of a set of agents, each of
them implementing a basic function within the system, and interacts using a logical
topology. It is important to notice that there is no one-to-one correspondence between
the trading agents in the Catallactic Algorithms layer (for example, Clients, Service
copies and Resources) and the agents in the P2P Agent Layer. Actually, we expect that
for each trading agent there will be several agents supporting them, carrying with low
level tasks like optimizing the logical topology, handling failures, and many others.

One additional consideration regarding this layer is the need for a great deal of
flexibility to allow the experimentation with diverse mechanisms like discovery and
agent migration, to explore the adaptation of the Catallactic middleware to different
ALNs. Therefore, the architecture should support pluggable component architecture
(BCG04], [BJM04])

C.1 Functional Blocks
This layer encompasses the following main functional blocks:

� Execution Platform: will provide hosting for the efficient execution of agents.
It should permit coexistence of a number of agents on an execution node and
facilities the creation, monitoring, scheduling, and management of agents.
Besides, the implementation of agents will be much simplified if such
functionality is provided by the platform. In scenarios when node failures are
possible, good failure management features are essential and the persistence of
agent’s state or even the mobility of agents to other nodes, could be required to
increase its availability ([HoB02], [PNC02])

� Resource Management: offers a generic interface to base platform’s local
resource management to permit its allocation and de-allocation of resources to
requesting agents. In some scenarios, it could be necessary to handle efficiently
the assignment of different types of resources in a single location (co-
allocation) and the reservation of resources for future usage. Finally, some
resource monitoring mechanism is required to control the state of resource
allocations for management, auditing, etc. ([ADG+04], [PBC03])

63

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� Communication: abstracts the basic communication mechanisms and isolates
agents form the complexities of the communication protocols. Since network
topology will be very dynamic and agent location could vary frequently, a
logical addressing to distinguish communications among different agents
regardless it location is required. In general, we are considering a dynamic
scenario where communication and node failures are not just possible, but very
likely; therefore communications should be assumed as unreliable and delivery
guarantee is not a requirement. Also, a robust failure management is required
([CJK+03])

� Overlay Network: manages the logical communication topology to efficiently
communicate cooperating agents regardless of their physical location. The
project is considering very large scale and highly dynamic scenarios where
logical communication topology can not be maintain in a single server, a
hierarchy of servers, and direct discovery of nodes is not feasible. It is required
a distributed mechanisms that provides overlay network construction and
maintenance. P2P topology construction mechanisms could be optimised for
fast location or fast information dissemination. Finally, in such a huge networks
of agents, the possibility of grouping them could be appealing to make
communication more efficient and management easier. ([GCB+04], [HCW04],
[DZD+03])

� Object Discovery: offers mechanism for the location of objects (agents and
resources). Catallactic middleware will be used in very large scale and dynamic
scenarios where resources, services and the agents which represent them can
not be maintained in a table. Therefore it required mechanisms to discover
resource and the agents which manage them. Discovery can be performed either
by resource advertising or by resource query and matchmaking mechanisms.
Besides, information changes can be published and subscribed to. In order to
diminish communication cost, some information cache management system
could be used. Finally, it might be required mechanism that permit complex
queries (multiple resources, multiple attributes, partial matches, range matches),
independent of the semantic of the resource description. ([TsRo03], [LCC+02],
[BHPW04])

� Security and Trust: We consider an open system where communication
attacks are possible, and agents are autonomous agents which could be
malicious. Therefore, mechanisms for agent authentication, agent access
authorization (e.g. trade on a given market), encryption of agent-to-agent
communications, non-repudiation of settled agreements, are required. Agent
reputation mechanisms could also be considered, since they has been proven to
diminish fraudulent operations ([FCC+03], [YHF+03]).

One important consideration with respect to the P2P Agent layer is the dependence of
its implementation on the functionalities provided by the underlying platform. This can
be observed in the figure C.1.

64

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

C
a
tn

e
ts

M
id

le
w

a
re

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Simulator

P2P Agent Layer

Simulator

Catallaxy Layer

Framework Layer

Platform doesn’t provide basic
functions to implement the
agents. P2P/Agent layer
supplies the required functions

Platform provides basic
functions. P2P/Agent layer is
an interface for upper layers

Simulator simulates the base
middleware and the behavior of
the application. P2P/Agent layer
is an interface for upper layers

Applications Layer

P2P Agent Layer

Base Plaform Layer

Catallaxy Layer

Framework Layer

C
a
tn

e
ts

M
id

le
w

a
re

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Applications Layer

P2P Agent Layer

Base Platform Layer

Catallaxy Layer

Framework Layer

Simulator

P2P Agent Layer

Simulator

Catallaxy Layer

Framework Layer

Simulator

P2P Agent Layer

Simulator

Catallaxy Layer

Framework Layer

Platform doesn’t provide basic
functions to implement the
agents. P2P/Agent layer
supplies the required functions

Platform provides basic
functions. P2P/Agent layer is
an interface for upper layers

Simulator simulates the base
middleware and the behavior of
the application. P2P/Agent layer
is an interface for upper layers

Applications Layer

P2P Agent Layer

Base Plaform Layer

Catallaxy Layer

Framework Layer

Figure C.1 - Implementation scenarios for P2P Agent Layer.

For example, if the base platform already provides a distributed location, the P2P Agent
will implement a simple “pass through” interface to this functionality, instead of
duplicating it. If the base platform’s functionality is incomplete, the P2P Agent layer
will complement it to guarantee the required level of functionality. In any case, it will
provide a standardized interface to the upper layer, regardless of the implementation
details.

C.2 Requirements
The table C.1 shows the detailed functionalities of this layer and the key requirements
that should be considered during the design stage and for the evaluation of
implementation alternatives. Each function is classified as “Required” (�),
“Convenient” (�) or “Optional” (�).

Component Functions Key requirements
Execution Platform
Hosting for the
efficient execution of
agents

� Agent life cycle management,
execution resource
management (thread
dispatching, memory, comm.
channels)

� Exception notification and
management

� Agent state persistence
� Migration and mobility of

agents
� Distributed activation (objects,

components, agents)
� Distributed transaction

management

Manage short lived agents (very
frequent creation and destruction of
agents)

Do not expose the thread and memory
management issues to programmers

Provide mechanism for agent chaining
and composition

Do not impose negotiation or
communication protocols

Resource Management
Generic interface to
base platform’s local

� Resource discovery and query
� Resource allocation and

Extensible representation of resource
properties

65

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

resource management deallocation
� Resource reservation (future

allocation)
� Resource monitoring
� Resource usage accounting
� Resource related alarms (e.g.

malfunctioning)

Support both direct queries and
Publish/Subscribe models for
resource information actualization

Support monitoring of frequently
changing attributes (e.g CPU
workload or network bandwidth)

Communication
Abstracts the basic
communication
mechanisms and
isolates agents form
the complexities of
the communication
protocols.

� Communication primitives
(send, receive, multicast)

� Logical addressing (global
naming) of agents

� Failure management

Best effort message delivery
Easy coordination of many parallel

conversations by a single agent
Synchronous and asynchronous

communication primitives
Support for mobile nodes (location

independent addressing)
Support efficient group and system

wide multi and any-casts
Overlay Network

Logical
communication
topology

� Overlay network construction
and maintenance

� Key based routing
� Peer grouping

Location awareness
Enable both local and system wide

information and request
dissemination

Support very frequently changing
topologies (node membership and
communication paths)

Object Discovery
Localization of
catallactic
middleware’s objects
based on attributes

� Resource advertising and
location

� Resource query and
matchmaking

� Information cache
management

� Publication/subscription of
information changes

Decentralized; do not requires global
repositories

Independent from the semantic of the
resource description

Complex queries (multiple resources,
multiple attributes, partial matches,
range matches)

Scalable to the millions of objects and
very frequent updates

Security & Trust
Assurance interacting
agents’ identities and
rights

� Agent authentication
� Agent access authorization

(e.g. trade on a given market)
� Encryption of agent-to-agent

communications
� Non repudiation
� Generic interface to base

platform’s security mechanism
� Agent Reputation

Compliant with standards
Decentralized/Federated to work in

multi-domain environments
Extensible to allow protection of new

kind of objects
Auditable

Table C.1 - P2P Agent Layer functionality

Besides providing these functional requirements, the Catallactic middleware should also
meet some technical requirements concerning performance, quality of service,
scalability, availability, etc. Such technical requirements vary from one implementation
to another even when providing the same functionality, due to the technology used to
implement such functionality and the specific usage scenario (application and
environment).

Therefore, in this initial analysis, we have limited the analysis to identify those
requirements without quantifying them. During the design and implementation of the
prototype, we will refine this analysis and provide specific metrics. In the table C.2 the

66

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

principal metrics are listed with an expected range for an “average” scenario (one that
would not be atypical to find).

Factor Functional
Component

Description Expected
Range

Hosting Number of agents per node > 1000
Communications Number of concurrent conversation per agent > 10
Resource Mgmt. Number of resource information updates (per

second)
> 100

Object Discovery Number of object queries issued by node (per
second)

> 100

Total number of objects registered > 106

Scalability

Overlay Number of actives nodes > 1000
Maximum agent creation time (milliseconds) < 100
Maximum state persistence time (milliseconds) < 500

Hosting

Maximum migration time (seconds) < 2
Communications Maximum message round trip (milliseconds) < 250
Object Discovery Maximum search time (seconds) < 1

Maximum allocation time (seconds) < 1

Responsivene
ss

Resource Mgmt.
Maximum resource information update time
(seconds)

< 1

Efficiency Hosting Maximum memory footprint (Mb) < 20
Table C.2 - Performance requirements for P2P Agent Layer

C.3 References
[ADG+04]G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A.
Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T Schütt, E. Seidel, B. Ullmer
(2004) “The Grid Application Toolkit: Towards Generic and Easy Application
Programming Interfaces for the Grid” to appear in Proceedings of the IEEE, 93(3)

[BCG04] G. Blair, G. Coulson, P. Grace (2004), "Research Directions in Reflective
Middleware: the Lancaster Experience", Proceedings of the 3rd Workshop on Reflective
and Adaptive Middleware (RM2004) co-located with Middleware 2004, Toronto,
Ontario, Canada, October 2004.

[BHPW04] D. Bauer, P. Hurley, R. Pletka, M. Waldvogel (2004),“Bringing Efficient
Advanced Queries to Distributed Hash Tables”, 29th Annual IEEE International
Conference on Local Computer Networks (LCN'04), November 16 - 18, 2004

[BJM04] O. Babaoglu, M. Jelasity, A. Montresor (2004), “Grassroots Approach to
Self-Management in Large-Scale Distributed Systems”, In Proceedings of the EU-NSF
Strategic Research Workshop on Unconventional Programming Paradigms, Mont Saint-
Michel, France, September 2004.

[CJK+03] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H.
Wang, A. Wolman (2003), “An Evaluation of Scalable Application-level Multicast
Built Using Peer-to-Peer Overlays”, In Proceedings. of IEEE INFOCOM, March-April
2003.

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, I Stoica, (2003),“Towards a
Common API for Structured Peer-to-Peer Overlays”, In the Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS '03), Berkeley, CA, 2003.

67

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

[EAB+99] F. Eliassen, A. Andersen, G.S. Blair, F. Costa, G. Coulson, V. Goebel,
O. Hansen, T. Kristensen, T. Plagemann, H.O. Rafaelsen, K.B. Saikoski, Y.
Weihai Yu, (1999), “Next generation middleware: requirements, architecture, and
prototypes”, Proceedings. 7th IEEE Workshop on Future Trends of Distributed
Computing Systems, Cape Town , South Africa, 1999

[FCC+03] Y. Fu, J. Chase, B. Chun, S. Schwab, A. Vahdat (2003),“SHARP: an
architecture for secure resource peering”, In Proceedings of the nineteenth ACM
symposium on Operating systems principles, Bolton Landing, NY, USA, 2003

[GCB+04] P. Grace, G. Coulson, G. Blair, L. Mathy, D. Duce, C. Cooper, W. Yeung,
W. Cai, "GRIDKIT: Pluggable Overlay Networks for Grid Computing", Proceedings of
International Symposium on Distributed Objects and Applications (DOA), Larnaca,
Cyprus, October 2004.

[HCW04] D. Hughes, G. Coulson, I. Warren, (2004), "A p2p Network with inherent
support for adaptation", Technical Report, (comp-006-2004), Lancaster University,
Lancaster, LA1 4YR.

[HoB02] C. Hoile and E. Bonsma (2002), "Towards a minimal hosting specification
for open agent systems : the lessons of IP" 1st International Workshop on "Challenges
in Open Agent Systems", AAMAS2002, July 2002, Bologna, Italy.

[LCC+02] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker (2002),“Search and replication in
unstructured Peer-to-Peer networks”, In Proceedings of the 16th international
conference on Supercomputing table of contents, New York, USA, Pages: 84 – 95, 2002

[PBC03] Parlavantzas, N., Blair, G.S., Coulson, G. (2003), "A Resource Adaptation
Framework for Reflective Middleware", Proc. 2nd Intl. Workshop on Reflective and
Adaptive Middleware (located with ACM/IFIP/USENIX Middleware 2003), Rio de
Janeiro, Brazil, June, 2003.

[PNC02] M. Purvis, M. Nowostawski, S. Cranefield (2002), “A multi-level approach
and infrastructure for agent-oriented software development”, Proceedings of the first
international joint conference on Autonomous agents and multiagent systems, Bologna,
Italy, 2002

[TsRo03] D. Tsoumakos, N. Roussopoulos (2003),”A Comparison of Peer-to-Peer
Search Methods” In Proceedings of the Sixth International Workshop on the Web and
Databases, June 12-13 2003, San Diego, USA

[YHF03] Y. Yan, Y. Huang, G. Fox, S. Pallickara, M. Pierce, A. Kaplan, A. Topcu.
(2003),“Implementing a Prototype of the Security Framework for Distributed Brokering
Systems”, Proceedings of the 2003 International Conference on Security and
Management. Volume I pp 212-218.

68

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Annex D - Middleware toolkits evaluation
D.1 Identification of candidate middleware toolkits and
evaluation process
We start this section recalling passages from the CATNETS proposal:

“For proper classification of this proposal, it should be noted that CATNETS
surpasses the objectives of the ‘Grids for complex problem solving’ call (FP6-
2.3.2.8), as its goals are not directly aimed at Grid technology but likewise at
Autonomic Computing, Peer-to-Peer Computing, Web Services etc., and it does
not intent to produce ready-to-use software tools, but aims at more fundamental
understanding of the transferability of an economic concept to information
systems in general”

It is clear from this statement, from the rich set of functional and non-functional
requirements given in annex C of this document, that CATNETS middleware has no
direct match with any existing middleware toolkit, but will rather integrate a set of
features currently applied in separate approaches. The tools to be analyzed and
evaluated for CATNETS middleware are thus taken from Web Services (WS), Grid,
P2P, Content Distribution Networks (CDN), and from agent toolkits

The list of candidate tools to be examined is the following:

� J2SE [J2SE05] (including RMI [RMI05] and JNDI [JNDI05])

� Web Services [WeSe05], JAX-RPC [JaRp05], Axis implementation [Axis05]

� WSRF [WSRF05] / OGSA [OGSA05]

� JXTA [JXTA05]

� JADE [JADE05]

� Diet Agents [DIET05]

We select these tools for evaluation considering the following criteria:

� How well do they fit the identified CATNETS requirements

� Which is the current strength of the platform (support and maintenance,
community commitment)

� Availability as open source

� Sources of information available, like bibliography (surveys and performance
comparison papers), platform’s websites documentation and mailing lists, and
our own and third parties/colleagues real experience with them.

69

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

Agent platforms are considered for the P2P-Agent Layer. There are important reasons
for that. Decentralized negotiations in CATNETS will need support for these
negotiations. Such support will provide maintaining several states, and the efficient
performance of parallel conversations. Explicit support to agent’s mobility could also be
required. Those functionalities are addressed by agent platforms, but are not explicitly
addressed by Grid or P2P platforms, like the Globus and JXTA implementations,
neither by current WS specifications.

We have considered several alternatives to cover the P2P Agent Layer like JADE and
DIET agent toolkits, pure Java, and others. JADE was selected because it is actually the
“de facto” reference implementation of the FIPA standard, widely adopted in MAS
community. Also it was shown by surveys to outperform alternative agent platforms
(BGN04) like Tryllian [Tryl05] (commercial platform based on JXTA) and SAP
[SAP05], a new platform close to but not fully implementing FIPA standard. DIET was
selected for its novel bottom-up and light-weighted approach which we found very
appropriate to comply with the identified CATNETS requirements. Another
performance-oriented agent platform has been considered, Cougaar [Coug05], a java-
based architecture for the construction of large-scale distributed agent-based applications. Even
considering its interesting technical properties (Wrig04), we discarded it due to the fact that
their objectives were far from the ones in CATNETS.

An alternative to using agent platforms is developing in Java the low level
functionalities required by the P2P2 Agent Layer, namely thread management, state
management, event management and agent/node mobility. The inconvenience is the
high implementation cost of doing so; therefore our focus is first evaluating existing
agent toolkits. The previously introduced tools are the ones we are going to carefully
evaluate in the next sub-sections. Other platforms to be taken into account during the
design and implementation phases are:

� P2P DHTs (Free Pastry[Past05], Coral DHT[Coral05], CHORD[Chor05],
CAN[RFH+01])

� Peer-to-Peer-Simplified (P2PS) [P2PS05]

For the present evaluation P2P DHTs are too “low level” from the view of most of the
considered properties. In fact they are could be suitable to cover one or only a few
functions on the architecture, but not the complete P2P Agent Layer or Base Platform
Layer. However, we see them as “complementary tools” to potentially provide some
specific functionality in a later stage.

P2PS is a P2P platform which appeared recently is. It aims to provide a simplified
version of JXTA. P2PS focus on the provision of basic P2P functions, an expressive and
extensible P2P discovery mechanism and pipe based communication, without caring
about more complicated functionalities commonly not required [Wang05]. P2PS
currently is in its early stages, and lacks from some interesting features like peer groups
and security (planned to be incorporated in the future). However, we appreciate its light
weighted orientation and once further developed we should take it into account as a
candidate for the Agent P2P Layer.

70

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

In the rest of this section we describe the evaluation of the selected six middleware
toolkit candidates, regarding the properties relevant from CATNETS requirements point
of view, and organized in three separated evaluations:

� Functional view: to what extent does the middleware toolkit cover the
functionalities identified in the architecture?

� Technical view: which is the performance cost associated with the basic
operations. Which are the technical limitations of the platform?

� Development view: community support, available resources and other aspects
that important for the implementation

D.2 Presentation of the candidates
We will take here much more time describing what we refer to by “WebServices” and
“Globus toolkit/WSRF” than describing the rest of platforms. The reason for that is that
for the rest of platforms the current releases are stable and it is easy to get a common
agreement to what their properties are. We cannot say the same of Web Services, which
are currently merged in a complex and hard to follow standardization process. Since
GT4 is implements WSRF, it is also involved in the same unstable process, moving
from OGSI to WSFR and re-factoring the whole specification. To clarify what exactly
we consider inside of our Web Services evaluation and GT4/WSRF evaluation, we
explicitly state which specifications we take into account for the evaluation. For the rest
of the evaluated platforms we just give some architectural details.

D.2.1 Web Services JAX-RPC implementations (Axis)
Web Services (WS) [W3c04] is an interoperability architecture that provides a standard
means for interaction between different software applications, running on a variety of
platforms and/or frameworks. In this architecture, a Web Service is a software system
designed to support interoperable machine-to-machine interaction over a network. It has
an interface described in a machine-process able format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. WS today goes far beyond the initial
SOAP/WSDL/UDDI standards triad. Figure D.1 presents a basic Web Services Stack.
Section D.6 describes in detail the WS specifications taken into account.

71

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 Figure D.1 - Web Services Stack (from [Cdbi04])

Apache Axis is an implementation of the JAX-RPC [JaRp05], specification, which
defines a mapping between WSDL [WSDL05] and Java architecture, and supports
communications based on SOAP [SOAP05]. One important feature of the JAX-RPC
architecture is its extensibility by means of handlers that can be chained in the SOAP
request processing for additional processing, like encryption.

Axis has proven itself to be a reliable and stable base on which to implement Java Web
Services. There is a very active user community, which is part of the Apache Project
[APAC] and there are many companies which use Axis for Web Service support in their
products

There are some extensions to Axis that support additional WS related specification:

� WS-Addressing (Addressing)

� Support for WS-Security (WSS4J)

� Support for WS-ReliableMessaging (project still in incubation stage, with
codename “Sandesha”)

D.2.2 WSRF/ OGSA
The WS-Resource Framework [WSRF05] is inspired by the work of the Global Grid
Forum's Open Grid Services Infrastructure (OGSI) Working Group [OGSI05]. Indeed,
it can be viewed as a straightforward refactoring of the concepts and interfaces
developed in the OGSI V1.0 specification in a manner that exploits recent developments
in Web services architecture (e.g. WS-Addressing).

OGSA design [Ggf04] is intended to facilitate the seamless use and management of
distributed, heterogeneous resources. In this architecture, the terms “distributed,”
“heterogeneous” and “resources” are used in their broad sense. For example:

72

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

“distributed” could refer to a spectrum from geographically-contiguous resources linked
to each other by some connection fabric to global, multi-domain, loosely- and
intermittently-connected resources. “Resources” refers to any artifact, entity or
knowledge required to complete an operation in or on the system

OGSA pretends to enable interoperability between diverse, heterogeneous, and
distributed resources and services as well as reduce the complexity of administering
them. The need to support heterogeneous systems leads to requirements that are
amenable to CATNET’s needs:

� Resource virtualization: management of diverse resources in a unified way.

� Common management capabilities: mechanisms for uniform and consistent
management of heterogeneous systems

� Resource discovery and query: Mechanisms for discovering resources with
desired attributes and for retrieving their properties

� Standard protocols and schemas: to allow platform and language neutral
interoperability

Some of the functions required in distributed environments, such as security and
resource management, may already be implemented by stable and reliable legacy
systems. Therefore the integration of external components is a key design consideration.

The primary assumption is that work on OGSA both builds on, and is contributing to
the development of the growing collection of technical specifications that form the
emerging Web Services Architecture. Indeed, OGSA can be viewed as a particular
profile for the application of core WS standards.

Even when OGSA emerged to address resource intensive scenarios related to e-Science
(computational grids, data grids) it has evolved to a more general architecture and aims
to include other scenarios like interaction from mobile devices and P2P systems.

To close the gap between those two worlds, the Commodity Grid Toolkit (CoG Kit)
defines and implements a set of general components that map Grid functionality into
commodity environment/framework, the like J2EE and DCOM.

The Globus Toolkit [Glob05] can be used to program grid-based applications. The
toolkit, first and foremost, includes quite a few high-level services that we can use to
build grid applications. These services, in fact, meet most of the abstract requirements
set forth in OGSA. In other words, the Globus Toolkit includes a resource monitoring
and discovery service, a job submission infrastructure, a security infrastructure, and data
management services. Globus uses Axis SOAP engine and incorporates a Tomcat
[Tomc05] Web Server.

OGSA has recently evolved to adhere to WSRF [WSRF05] as a fully WS based
architecture. The more relevant specifications from WSRF are detailed in section D.6

The soon-to-be-released Globus Toolkit 4 (GT4) [GT405] (figure d.2), in fact, includes
a complete implementation of the WSRF and Web Services Notification specifications.

73

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

GT4 provides an API for building stateful Web services targeted to distributed
heterogeneous computing environments.

Since the working groups at GGF are still working on defining standard interfaces for
these types of services, we cannot say at this point that GT4 is an implementation of
OGSA (although GT4 does implement some security specifications defined by GGF).
However, it is a realization of the OGSA requirements and a sort of de facto standard
for the Grid community while GGF works on standardizing all the different services.

Figure D.2 - GT4 Architecture (from [GT4])

D.2.3 J2SE
Java technology [J2SE] is a portfolio of products that are based on the power of
networks and the idea that the same software should run on many different kinds of
systems and devices. In addition to the core and extension Java language libraries, J2SE
includes the following

� RMI: Java Remote Method Invocation (Java RMI) [RMI05] enables the
programmer to create distributed Java technology-based to Java technology-
based applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines*, possibly on different hosts. RMI uses object
serialization to marshal and un-marshal parameters and does not truncate types,
supporting true object-oriented polymorphism.

� JNDI: The Java Naming and Directory Interface (JNDI) [JNDI05] is part of the
Java platform, providing applications based on Java technology with a unified
interface to multiple naming and directory services. It is possible to build
powerful and portable directory-enabled applications using this industry
standard.

74

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

D.2.4 JXTA
JXTA™ [JXTA05] technology is a set of open protocols that allow any connected
device on the network to communicate and collaborate in a P2P manner. JXTA peers
create a virtual network in which any peer can interact with other peers and resources
directly even when some of the peers and resources are behind firewalls and NATs or
are on different network transports. Figure D.3 presents the basic architecture of JXTA,
including the JXTA services and protocols.

The Project JXTA virtual network allows a peer to exchange messages with any other
peers independently of its network location (firewalls, NATs or non-IP networks).
Messages are transparently routed, potentially traversing firewalls or NATs. The Project
JXTA virtual network standardizes the manner in which peers discover each other, self-
organize into peergroups, discover peer resources, and communicate with each other.

Project JXTA builds upon the 5 virtual network abstractions. First, a logical peer
addressing model that spans the entire JXTA network. Second, peergroups that let peers
dynamically self-organize into protected virtual domains. Third, advertisements to
publish peer resources (peer, peergroup, endpoint, service, content). Fourth, a universal
binding mechanism, called the resolver, to perform all binding operations required in a
distributed system. Finally, pipes as virtual communication channels enabling
applications to communicate between each other.

All network resources in the Project JXTA network, such as peers, peergroups, pipes,
and services are represented by advertisements. Advertisements are language-neutral
metadata structures resource descriptors represented as XML documents. Project JXTA
standardizes advertisements for the following core JXTA resource: peer, peergroup,
pipe, service, metering, route, content, rendezvous, peer endpoint, transport.

Figure D.3 - JXTA Architecture (from [Li01])

The JXTA 2.x release introduces the concept of a rendezvous peer view (RPV) to
propagate resolver queries, and a shared resource distributed index (SRDI) to index
advertisements on the rendezvous peer view for efficient advertisement query lookups.

75

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

D.2.5 JADE
JADE (Java Agent Development Framework) [JADE05] is a software framework
implemented in the Java language. It simplifies the implementation of multi-agent
systems by a middleware toolkit that complies with the FIPA [FIPA05] specifications
and by a set of graphical tools that support the debugging and deployment phases.

The agent platform can be distributed across machines (which not even need to share
the same OS) and the configuration can be controlled via a remote GUI. The
configuration can even be changed at run-time by moving agents from one machine to
another one, as and when required

The communication architecture of JADE offers flexible and efficient messaging, where
it creates and manages a queue of incoming ACL messages, private to each agent.
Agents can access their queue via a combination of several modes: blocking, polling,
timeout and pattern matching based. The full FIPA communication model has been
implemented and its components have been clearly differentiated and fully integrated:
interaction protocols, envelope, ACL, content languages, encoding schemes, ontologies
and transport protocols. The transport mechanisms like a chameleon because it adapts to
each situation, by transparently choosing the best available protocol. Java RMI, event-
notification, and IIOP are currently used, but more protocols can be easily added and
HTTP has been integrated. Most of the interaction protocols defined by FIPA are
already available and can be instantiated after defining the application-dependent
behaviour of each state of the protocol. Service level and agent management ontology
are available, as well as the support for user-defined content languages and ontologies
registered with the agents and automatically used by the framework. JADE has also
been integrated with JESS, a Java shell of CLIPS, in order to exploit its reasoning
capabilities. Figure 4.4 illustrates the main elements of the JADE platform.

Figure D.4 - FIPA/JADE architecture (from [JadA04])

D.2.6 Diet Agents
DIET Agents [DIET05] is a multi-agent platform in Java. It was developed as part of
the DIET project [DIET05] and released as Open Source at the end of the project. A
bottom-up design was used to ensure that the platform is lightweight, scalable, robust,

76

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

adaptive and extensible. It is especially suitable for rapidly developing Peer-to-Peer
prototype applications and/or adaptive, distributed applications that use bottom-up,
nature-inspired techniques. The basic architecture is presented in figure D.5.

The platform has been designed to be scalable, robust and adaptive using a "bottom-up"
design approach:

� It is scalable at a local and at a global level. Local scalability is achieved
because DIET agents can be very lightweight. This makes it possible to run
large numbers of agents in a single machine. The DIET Agents platform is
scalable in the sense that the architecture does not impose any constraints on the
size of distributed DIET application. The architecture is fully decentralized, thus
does not impose centralized bottlenecks.

� It is robust and supports adaptive applications. The DIET kernel itself is robust
to hardware failure and/or system overload. The effects of these failures are
localized, and the kernel provides feedback when failure occurs allowing
applications to adapt accordingly. The decentralized nature of the DIET Agents
platform also makes it less susceptible to failure.

� It is based on a bottom-up, nature-inspired design approach. DIET agents are not
assumed have artificial intelligence features and/or use complex communication
protocols. Instead, agents can be very small and simple, allowing intelligent
behaviour to emerge from the interactions between large numbers of agents

� Lightweight: The agents have a minimal memory footprint and inter-agent
communication can be very fast. Agents can be thought of as small, mobile
processes.

� Extensible: A high quality Object-Oriented design ensures that the code is
general, modular and extensible. The Application Reusable (ARC) Layer
provides support for plug-and-play agent behaviours, enabling modular
construction of agents.

Application Layer Application components

Application Reusable
Layer
(plugged into agents as
jobs)

Application reusable components
- remote communication
- agent behaviours
- events scheduling

Core Layer
(minimal agent hosting
environment)

DIET Agents kernel
- Basic messaging
- Thread Management
- Mobility

 Figure D.5 - DIET Agents Architecture (from [DietA04])

77

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

D.3. Middleware Evaluation Summary

D.3.1 Functional view: Mapping middleware toolkits into the
architecture

In the functional view we evaluate which roles in the architecture could cover each
middleware toolkit, mapping toolkits into the architecture low level layer boxes. This
mapping requires considering characteristics like centralization/decentralization,
discovery types support, degree of modularity, persistence, communication functions
and security. A detailed evaluation concerning each of the identified functional
requirements is presented in section D.5.1.

The middleware toolkits are evaluated in view of a set of functional requirements,
which are: 1) execution platform, 2) resource management, 3) interoperable
communication, 4) overlay network, and 5) security.

DIET and JADE provide the best execution platform for agents, due to the fact that
they are developed to manage Multi-Agent Systems (MAS). JADE implements the
FIPA standard and provides all the functionalities of the Agent Management System. A
JADE platform relies on a main container, which contains the AMS and the yellow
pages service or Directory Service (DF). Additional secondary containers in remote
hosts are linked to the main one. The architecture is rather centralized concerning the
agent management. Some support to decentralisation is given by the federation of
replicated DFs. Significant support for the construction and management of reasoning
agent is given (ontologies, integration with rule-engines and rich built-in behaviours
templates). Contrarily, DIET concentrates in offering a much more light-weighted core
with agent management being fully decentralized It provides basic support for
messaging and thread management,. The goal of DIET is to achieve high performance,
scalability and fault tolerance, promoting self-organization rather those hard-coded
reasoning agents. Thus, no extra support for the construction of reasoning agents is
provided,

Resource Management is offered by WSRF/OGSA, since Grid resources management
is one of the design goals. Within GT4 extensive support is given for local resource
management, resource data collection and resource monitoring. The other middleware
toolkits evaluated here do not give support to Resource Management, with exception of
JXTA, which has some support for peer information management by means of the
resolver service and peer monitoring service. Out of the evaluated middleware toolkits
only GT4 considers the support for multiple competing applications (instead of
cooperative applications), in which resource sharing becomes a critical issue.

Web Services provide support for interoperable communication with SOAP and a huge
and continuously growing set of specification for WS-everything. This feature is very
important because of the worldwide adoption and industrial support of WS standards for
component interaction in loosely coupled distributed systems. JXTA also is oriented
towards this direction providing pipes for point-to-point communication and XML
based messaging. Ongoing projects of JXTA incorporate SOAP based communication
in JXTA pipes. WSRF/OGSA leverages interoperability from WS. As for JADE and
DIET, both accept extensions to support SOAP communication by means of a
convenient java API. Though important, SOAP may not be always the best solution,

78

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

especially if performance becomes an issue. RMI or TCP/UDP may become much more
adequate for those cases.

Overlay network functionalities and decentralized resource discovery is best provided
by JXTA. The JXTA 2.x super-peer network [Trav03] provides a powerful and scalable
key-based routing engine, enriched with JXTA expressive XML advertisements
discovery. In contrast, centralized, or at best federated, discovery and notifications are
supported in GT4/WSRF and Web Services by Index Service and UDDI respectively,
which however limits their use in large-scale decentralized environments.

Security issues are best supported by standard WS-specifications in Web Services and
GT4. JXTA provides also integrated but inflexible support for security. J2SE itself
provides flexible APIs for security which can in fact turn much more modular for
application integration by a good support for delegation.

It becomes clear from this functional analysis, that strong complementarities exist
between the different middleware toolkits, and no single toolkit will cover all of the
desired functionalities for CATNETS.

D.3.2 Technical View
We consider in this section technical parameters related to scalability, supported
protocols, messaging channels, messaging types and performance, naming services and
yellow pages performance, robustness and fault-tolerance. The comparison of the
middleware toolkits is given in section D.5.2.The parameters taken into account are the
following:

Standards & Protocols: Which standards are supported by the platform, and which
protocols does it implement (if any)

Messaging Channels: Possible message channels for inter-platform messaging

Messaging Types: Considers synchronous and asynchronous messaging. Synchronous
means that buffers are not used. Request from an agent/peer A to an agent/peer B are
supposed to be followed by an answer from B before the start of any other conversation.
Asynchronous means using buffers for messages and the ability to perform parallel
conversations. Also covers if P2P multicast style communication is supported or not.

Messaging Performance: This is based on the Round Trip Time (RTT) measured in ms
for the sending and reception of a message. The test beds are taken from existent
surveys. This performance measure does not indicate the overall performance, since that
also depends on scalability, naming services and memory issues. In order to get a
comparative performance measure, we give the RMI messaging performance in ms, and
express the other platforms relative to the RMI case, indicating N x RMI time.

Resource Discovery Performance: How well perform the publishing and discovery
services on the platform.

Scalability Nº Agents/Noses/Resources: Maximum number of agents/nodes/resources
that can be instantiated without platform crash or heavy performance degradation.

79

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

The results of our study concerning the technical view are:

Standards & Protocols: Axis and GT4 leverage basically WS technologies and
protocols. These standards have important supported in industrial settings. JXTA
specifies a set of P2P standard protocols, targeting the full spectre of P2P applications
(from file-sharing to corporative P2P applications).

JADE implements FIPA specification for MAS architectures, providing also standard
behaviours. It is bound to that standard and it has been proved it is quite complicated for
JADE-based multi-agent systems to interoperate with agent platforms not complying
with FIPA. Some research efforts have been trying to interoperate FIPA with WS and
J2EE architectures [LRCN03], but still remains unclear the future of those approaches.
More and more Web Services are growing as the standard for “loosely couple open
systems”, and that includes most of multi-agent applications. FIPA standard probably
won’t be continued and agent platforms will be based on extensions upon the WS-
standards such as Web Services Conversation Language (WSCL) and WS-Agreement
(the path followed by [PaJe05]). Another important conclusion from this paper is that
WSCL and WS-Agreement are suitable for closing deals, but they don’t give explicit
support for auctioning and/or bargaining. That is an important fact to be taken into
account by CATNETS if aiming to develop negotiating agents.

With a totally opposed philosophy, DIET Agents is standard agnostics and concentrates
in providing modularity and a bottom-up design. DIET agents are not assumed to be
highly intelligent and/or to use complex communication protocols. Instead, agents can
be very small and simple, allowing intelligent behaviour to emerge from the interactions
between large numbers of agents.

Messaging channels: We have here two kinds of middleware toolkit. On one side, the
ones with XML envelope and commonly transported on top of HTTP (SOAP in WS and
GT4, pipes in JXTA), which focuses on functionality. They bring loosely coupled
interoperability and are also firewall and NAT friendly. On the other side the ones
which focus more on performance. RMI brings an efficient invocation compared to
SOAP. The penalty here is the loose in interoperability, since the applications need to
talk Java RMI. In general JADE and DIET approaches to messaging are more flexible,
since basic messaging is provided (RMI, TCP/UDP sockets),and XML based messaging
however is either given as a plugging or expected to be implemented and plugged by the
developer when needed.

Messaging Types: WS SOAP messaging is not explicitly specified to be synchronous,
but current implementations are so. It is expected that JAX-RCP 2.0 will support
asynchronous messaging. GT4 leverages from the AXIS engine and incorporates the
same synchronicity. JXTA pipes provide more flexible communication by means of
asynchronous messaging and P2P multicast. JADE and DIET, being agent platforms,
provide asynchronous handling of messages such that agents are able to maintain
parallel interactions with other agents.

Message Performance: SOAP and pipes as XML-based messaging mechanism perform
considerably slower than RMI (~10 times slower) [Juri04]. Although different
techniques exist in order to increase the performance of XML messaging [Chiu04], it
needs to be considered in which cases SOAP messaging is actually required. JXTA
messaging based on JXTA pipes also has a higher overhead than RMI. In general,

80

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

starting a platform in JXTA and performing peers discovery and messaging is a
computationally demanding task [HaDe03a, HaDe03b]. JADE communication is based
on RMI and its performance is close to this underlying technology [VQC02]. DIET
agents default for remote communication is using TCP/UDP sockets, but other
mechanisms could be plugged given a suitable Java API.

Resource Discovery Performance: jUDDI [JUDD05] was the implementation of WS
UDDI repository evaluated due to its extensive presence. It has an average performance
as centralized registry and suffers from performance degradation in the case of
concurrent publications [SSB04]. Globus Index Service is expected to improve
performance in GT4 from previous GT3 release. GT3 Index Service had problems to
scale to thousands of nodes, but Globus developers expects from GT4 information
Services (MDS4) to be able to scale up to 10000 nodes without performance
degradation. JXTA super-peers network with the rendezvous nodes and the SRDI
distributed hash table is expected to perform well for key-based routing [Sing03]. The
provided DHT is considered as a compromise to perform well in most typical P2P
configurations [Trav03]. JXTA rendezvous super peer network performance is analysed
in deep and found to be good compared to both centralized and previous P2P flooding
approaches [HDT04]. JADE Directory Facilitator performance is good for small
platforms, but has been reported by some users to be very problematic when using
federated registries [Jadx04].

Scalability Nº Agents/Noses/Resources: UDDI and Globus Index Service central
directories have limited scalability. Nevertheless, GT4 developers claim GT4 Index
Service to be able to scale up to 10000 nodes, but no empirical test is available. JXTA
P2P overlay network is expected to be able to gracefully scale using rendezvous nodes.
Thus the current JXTA super peer network provides increased scalability (Trav03]. For
JADE, performance degrades when platform size scales, as pointed out by several
colleagues when performing direct experimental testing. Additionally, some tests have
been performed on JADE containers distributed across 8 nodes. The platform was not
able to manage more than 600 agents, and some uncontrolled complex interactions
JVM-JADE were detected (CTGK+04). DIET, which is specifically designed for
scalability, is scalable at a local and at a global level. Local scalability is achieved
because DIET agents can be very lightweight. This makes it possible to run a large
numbers of agents in a single machine. The DIET Agents platform is also globally
scalable, because the architecture does not impose any constraints on the size of
distributed DIET applications. This is mainly achieved because the architecture is fully
decentralized. An example of more than 100000 DIET agents successfully living in a 16
nodes cluster is given in [BoHo03].

D.3.3 Development view
We evaluate the middleware toolkit as a development platform for a complex
development tasks. This is an important view since the challenge to “make real” the
designed middleware architecture depends also on the ease of development and support
provided by the platform and tools. The complete evaluation of development view is
given in section D.5.3. The criteria considered in this evaluation are:

� Languages: The programming languages supported for developing with this
platform

81

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

� Community Support: Strength of the community built around the platform.
Universities and companies involved, deployed real applications, the platform
and website maintenance are taken into account.

� API: Richness and complexity of the API provided. How easy is to program
with the given API?

� Modularity & integrability: How amenable to be integrated within different
architectures is the platform?

� Available tooling: Are there any tool developed to ease the use of this platform
from the designer and implementer point of view?

� Specifications & Documentation: Is it understandable for the developers the
specification? Which is the quality of the documentation provided with the
software package or online?

� Tutorials, books Developers sup. & mailing-list: Available tutorials or books.
Mailing lists are helpful? We evaluate also here to what extent platform
developers are involved in the support to the platform users.

 The results of our study concerning the development view are:

Languages: All 6 middleware toolkits are java based. The JXTA protocols specification
has only one complete reference implementation, the Java one. WS has also a C++
implementations, but we consider Axis, developed by the Apache foundation and it is
Java based. JADE and DIET are also fully developed in Java. It is clear that Java
provides many facilities for distributed systems middleware programming which are not
present in any other OO language. The most salient is platform independence due to the
Java Virtual Machine. C++ libraries for networking are clearly inferior to the ones
provided by Java. The only drawback for Java is the performance, and JIT technology
for bytecode compilation is narrowing step by step the difference with machine
compiled languages. In CATNETS we assume Java as the language most suitable for
the project purposes.

Community Support: WS is clearly leading on the industrial support. That is certainly
true, to the point that JXTA is adding a plugging to its pipe-based communication
mechanism in order to provide SOAP invocation support. JADE also offers SOAP
plugging, and in the future the FIPA standard which JADE implements will probably be
replaced by some new multi-agent systems standards, focused in WS-family standards.
Apart from that fact, JADE community is big and important within the agent
community. Globus went even farer and moved from GT2 to the OGSI approach. WS
standards are a first attempt, which finally embraced into WS with GT4 and WSRF.
J2SE has the Java community behind, Sun support and a currently generalised and even
increasing uptake of Java for distributed computing worldwide. JXTA is also supported
by Sun and the community behind is quite big and very active. Nevertheless, their initial
attempt to become the de-facto P2P standard has been far from succeeding. DIET is the
weakest platform in this aspect, since it is a product developed by British Telecom and
later released open-source. There are several academic projects using it, and BT is
continuing industrial development with the platform as well as platform maintenance
and enhancement.

82

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

API: We find that current WS (Axis), GT4 and JXTA APIs are definitely complex.
XML-based interoperability has converted these platforms in something very abstract
and the APIs are not easy to learn. The learning curve is high for those three
technologies. It is also true that the objectives of these platforms are definitely broad
and part of the complexity they exhibit comes directly from the complexity of the real
problem they address.

A quick view on the GT4 architecture presented in section D.2.3 can give us an idea of
the API complexity. The huge number of OGSA (from GT3 and GT4) and non-OGSA
services provided (from GT2) increases the platform complexity.

As we will document with more detail in the next section, we consider specially
complicated the JXTA API. If we look at JXTA architecture in section D.2.5 we can
see support for groups, pipes, peer monitoring and security on the core itself, which
turns into a quite complicated API. We believe that alternative projects like P2PS may
suit better most developers needs. It is not as clear if the API complexity comes up
directly from the problem complexity. Concerning JADE and DIET, they focus much
more on providing a simple (richer in the case of JADE) API for easy developing MAS
applications.

Modularity & integrability: WS and Globus provide very good integration between
loosely coupled systems. JXTA and JADE aim to provide P2P and agent systems
standards respectively, but failed in some sense since the adoption of their standards is
not as popular as WS. JXTA is based on XML, and is in a better position in this sense. .
As for DIET, its standard agnostic condition is another point of view to address the
open systems problematic. The levels of modularity achieved by DIET are mostly due
to its property of minimal core provided [HoBo02]. All extra communication, security,
etc functionalities are plugged into the Application Reusable Component (ARC) layer.
It is very lightweight, and comparing its architecture with the JXTA API we see that the
core supports just basic messaging, thread management and agent mobility. Remote
communication, a framework for pluggable agent behaviours and support for scheduling
events are provided in the ARC Layer, promoting modularity and making it easy to plug
additional features into the platform.

Available tooling: WS has currently extensive tools for the support of creation,
management and orchestration of Web Services. GT4 expects leveraging all these WS
tools via WSRF. JXTA provides few tools aside the JXTA platform, but that may be
due to the fact that built-in JXTA protocols cover almost any P2P functionality needed
by the developer. JADE provides debuggers and sniffers for monitoring of agents
conversations. DIET provides some support for agent’s interaction visualization. J2SE
has been enriched by numerous IDEs, debugging tools and performance measurement
tools. All this rich tooling for Java programming can be leveraged by the rest of the
middleware toolkits since they are all Java based.

Specifications & Documentation: WS specifications are generally too dense, which is
specially unpleasant for developers since there is no clear knowledge about which
specifications are draft, which standard and which between them are available in the
development platform selected. This is in part consequence of the novelty of WS, but
also due to the un-stability of the open domain it addresses. GT3 had the same problem,
but aggravated by adding the Grid-specific issues. With WSRF, specifications have
been separated into 5 different sets of documents, covering the different subsets of

83

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

issues. A main problem in GT3 was the fact that documentation for practical
development with the platform was very poor. It was really hard to get support for
practical Grid application development with GT3, with the honours exception of Borja
Sotomayor Globus tutorial [Borj05]. That lack of support is not expected to be solved in
GT4, since documentation is supposed to be developed by volunteers This is a very
negative point from the developer’s point of view. JXTA documentation is better, but it
covers just very simple cases. It is very hard to get support for more complicated
application development, while the API itself is fairly complex. JADE documentation is
much more extensive and useful from the developer’s point of view, but still lacks
support for the large scale MAS deployment step. DIET has a simple documentation,
but programming with the platform is quite easy, such that the provided documentation
is enough to understand the basics of programming with DIET. Like in JADE, support
for the large scale MAS deployment is also missing in the DIET documentation.

Tutorials, books Developers sup. & mailing-list: Papers and books on WS, Globus and
JXTA are extensively available. One problem with books is that code gets quickly
outdated. The problem with papers is that they give a good overview, but few resources
for practical implementation. In general, good tutorials for the practical development
with platforms are very rare. Users and developers mailing-lists are very active for these
platforms. JADE also has a very active mailing-list. DIET mailing lists are much less
active, one reason might be the small size of the community, but DIET platform
developers themselves have given support to DIET users. As for Java, the Java Tutorial
covers almost all need for basic development, and countless books and advanced
tutorials provide support for development.

D.3.4 Tests on middleware toolkits integration
We evaluate in this section the ease of integration with other platforms. This is
especially important for CATNETS since expect to build the CATNETS middleware
from a combination of middleware toolkits. Most of the evaluation work in this section
is first-hand, conducted by the CATNETS WP3 members through tests and
implementations using the toolkits of.

We have tested DIET – JXTA Discovery Service integration. Both toolkits are
complementary, since DIET does not provide P2P Discovery mechanism, but expect the
developer to plug one himself taking advantage of DIET decentralized architecture.
JXTA Discovery Service has promising features, incorporating a built-in DHT (SRDI).
The result is that DIET reusable jobs in the ARC layer provide a useful placeholder for
such discovery mechanism. It could be seen that the integration of this functionality of
JXTA into DIET was fairly straightforward. From the tests it appears that integrating
another discovery or remote communication mechanism into DIET (for example an
UDDI registry for centralized discovery, or a SOAP engine for Web/Grid services
invocation) would also use the corresponding Java API (UDDI4J, AXIS, etc). That
feature comes from the minimal DIET core, which does not impose any standards for
transport channels, remote communications, directory management or semantics.

As for JXTA, we found it very hard to decouple the discovery service from the rest of
JXTA protocols in order to use it as a ready-to-use service. In the standard usage one is
forced to launch the JXTA platform using the graphical JXTA configuration tool,
including security settings. Flexibility is clearly not a feature in JXTA. Developers
aiming to use just the discovery service apparently need to start the whole JXTA

84

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

platform and use the XML-based advertisements, which can lead to a performance
problem in some applications. From this test we identified the need of considering
alternative P2P discovery implementations, as for example the earlier mentioned P2PS.
P2PS could be much more light-weighted, allowing easier integration with other
platforms. P2P DIET [StMk04], developed also within the DIET project could be
another interesting alternative to provide P2P discovery service.

Another test we have carried out is the integration of GT3 Grid Services invocation into
JADE. It revealed to be quite straightforward since both kits are Java, so importing the
Globus API into JADE application was enough to provide a clean interaction with GT3
Grid Services from JADE. We did not attempt to address Discovery issues merging
Globus Index Service with JADE, but we believe this will be quite a hard issue. JADE
Directory Facilitator has been reported by other colleagues at UPC to be very inflexible.
There are several attempts to provide a P2P-aware DF for JADE, most of them
integrating JADE and JXTA, to our knowledge without success [Jadx04]. The FIPA
specification for DF is too rigid and centralized and its integration with P2P
architectures leads to bad performance.

We will continue performing tests on middleware toolkits integration, since this is an
important issue for CATNETS and can also give us practical clues on the feasibility of
the proposed architecture for CATNETS

D.4 Conclusions

D.4.1 Conclusions on functional, technical and development views
The conclusion of our study on middleware toolkits for CATNETS implementation is
that no single middleware toolkit fulfils all the requirements. However, exploiting
complementarities of different middleware toolkits and integrating them in the proposed
architecture we could get a Catallactic middleware, which potentially can be:

� Flexible and robust, being able to cope with heterogeneity and dynamics

� Efficient in order successfully implement and reproduce expected behaviour of
the Catallactic model

� Complete in the sense that it can cover several ALN domains.

We provided a classification of the middleware toolkits with regards to the P2P Agent
Layer. JADE, DIET Agents or just pure java with J2SE are candidates to cover the P2P
Agent Layer. WS, WSRF/OGSA, and JXTA are also able to cover the Base Platform
Layer. Additionally, several functions on the P2P Agent Layer may be also covered by
the middleware toolkit from the Base Platform Layer. For example JXTA can be used
for P2P Discovery of DIET agents; GT4 can cover security for a Grid application, and
so on. We have evaluated to what extent the middleware toolkits cover each of the
identified functionalities. From that analysis it becomes explicit that no single
middleware toolkit provides all the desired functionalities. Then, CATNETS
middleware will be a composition, guided by the developed architecture.

We have considered performance issues, since the number of negotiations required by
agents in CATNETS may constraint the type of messaging, discovery, or both,

85

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

depending on the application. Thus, to implement the prototype of CATNETS it is not
enough porting the algorithms from the simulator into a prototype.

We identify current ALN middleware WS, GT4, and JXTA to be very complex: Huge
and dense specifications, complex architectures and XML-messaging could not provide
lead the modularity desired by the CATNETS architecture.

The P2P Agent Layer is the proposed solution to address the ALN middleware
integration. We need from the middleware toolkit covering that layer to be modular
enough to provide a reasonable integration with the Base Platforms. To that respect
DIET clearly outperforms JADE, since the FIPA specification is too rigid to delegate
functionalities into the Base Platform. DIET Agents gives support where we need it
(basic messaging and platform management, thread and memory management, context
support for negotiations and mobility) without imposing communication transports,
semantics or centralized discovery mechanisms. An alternative for the P2P Agent Layer
implementation is using directly J2SE, which gives as total freedom, but also would
require considering low-level platform management implementation issues.

Considering documentation and development support, industrial standards like Web
Services have extensive support, while other technologies as GT4 and JXTA lacks
support for development when regarding their platform complexity. JADE has a good
documentation, and DIET has a too simple documentation, but good platform
developer’s support. J2SE is best rate on support issues since Sun and the Java
communities are behind taking care on comfortable Java language adoption by
developers.

In figure D.6 we graphically summarize the scoring of each middleware toolkit
regarding the set of functional, technical and development views properties.

MIDDLEWARE TOOLKIT/
PROPERTY

JXTA WS WSRF
/

OGSA

JADE DIET J2SE

Execution platform
Overlay Network
Object Discovery
Communication Primitives
Resource Management

Fu
nc

tin
al

Security
Standards support
Messaging types
Messaging performance
Object Discovery Performance

T
ec

hn
ic

al

Scalability
Maturity & Support
API complexity
Modularity and Integrability
Specifications and documentation

D
ev

el
op

m
en

t

Available tooling

Good Average BadFigure D.6: Middleware toolkit scoring on the 3 views

86

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

D.4.2 Joint selection of middleware and application
As a result of our findings we state:

� CATNETS middleware must be a flexible composition of existent
middleware toolkits in order to handle the inherent complexity of real Grid
and P2P scenarios and to implement the catallactic model.

� Part of the middleware used in a particular implementation depends on the
application selected. The strengths identified in each of the candidate
middleware toolkits are then used to decide upon the set of implementation
toolkits.

87

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

D
.5

 M
id

dl
ew

ar
e

To
ol

ki
t E

va
lu

at
io

n
D

et
ai

ls

D
.5

.1
 F

un
ct

io
na

l V
ie

w

R
eq

ui
re

m
en

t/T
oo

lk
it

JX
T

A
W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA
JA

D
E

D
IE

T
J2

SE

Ex
ec

ut
io

n
Pl

at
fo

rm

A
ge

nt
 H

os
tin

g
(li

fe
cy

cl
e

&
 E

xe
cu

tio
n

re
so

ur
ce

m
an

ag
em

en
t)

B
ui

lt-
in

/in
ef

fic
ie

nt
N

on
e

B
ui

lt-
in

 /W
SR

F
B

ui
lt-

in

/e
ff

ic
ie

nt

B
ui

lt-
in

/
lig

ht
w

ei
gh

t
N

on
e

E
xc

ep
tio

n
no

tif
ic

at
io

n
an

d
m

an
ag

em
en

t
B

ui
lt-

in
N

on
e

/ d
ep

en
ds

on im

pl
em

en
ta

tio
n

B
ui

lt-
in

 /W
S

–
B

as
eF

au
lt

B
ui

lt-
in

B
ui

lt-
in

N
on

e

A
ge

nt
 st

at
e

pe
rs

is
te

nc
e

N
on

e
N

on
e

/ S
ta

te
le

ss

B
ui

lt-
in

 /W
SR

F
St

at
ef

ul
B

ui
lt-

in
B

ui
lt-

in
N

on
e

M
ig

ra
tio

n
an

d
m

ob
ili

ty

B
ui

lt-
in

N
on

e
N

on
e

B
ui

lt-
in

B
ui

lt-
in

R
es

ou
rc

e
M

an
ag

em
en

t

R
es

ou
rc

e
al

lo
ca

tio
n

an
d

de
al

lo
ca

tio
n

N
on

e
N

on
e

B
ui

lt-
in

/W
S-

G
R

A
M

N
on

e
N

on
e

N
on

e

88

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

R
eq

ui
re

m
en

t/T
oo

lk
it

JX
T

A
W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA
JA

D
E

D
IE

T
J2

SE

R
es

ou
rc

e
M

on
ito

ri
ng

B
ui

lt-
in

 /
R

es
ol

ve
r

Se
rv

ic
e

N
on

e
B

ui
lt-

in
W

S-
R

es
ou

rc
eP

ro
pe

rt
ie

s

N
on

e
N

on
e

N
on

e

R
es

ou
rc

e
D

is
co

ve
ry

 a
nd

 Q
ue

ry
B

ui
lt-

in
/

M
on

ito
rin

g
Se

rv
ic

e

N
on

e
B

ui
lt-

in
 /M

D
S

C
en

tra
liz

ed

N
on

e
N

on
e

N
on

e

C
om

m
un

ic
at

io
n

A
ge

nt
 a

dd
re

ss
in

g
an

d
lo

ca
tio

n
B

ui
lt-

in
 /

D
is

co
ve

ry
Se

rv
ic

e

B
ui

lt-
in

 /U
D

D
I

B
ui

lt-
in

 /W
S-

A
dd

re
ss

in
g

B
ui

lt-
in

 /
A

ge
nt

ID
s

B
ui

lt-
in

 /A
ge

nt

Ta
gs

 a
nd

 ID
S

B
ui

lt-
in

 /

JN
D

I

B
as

ic
 m

ec
ha

ni
sm

 (
se

nd
, r

ec
ei

ve
,

m
ul

tic
as

t)
B

ui
lt-

in
 /

 b
y

Pi
pe

s

B
ui

lt-
in

 /

SO
A

P

Su
pp

or
te

d/
W

S-
N

ot
ifi

ca
tio

n

B
ui

lt-
in

 /W
S-

N
ot

ifi
ca

tio
n

B
ui

lt-
in

 /

R
M

I-
II

O
P

N
o

m
ul

tic
as

t

B
ui

lt-
in

 /
 A

R
C

La
ye

r
B

ui
lt-

in
 /

R
M

I

N
o

m
ul

tic
as

t

X
M

L
 m

es
sa

ge
 h

an
dl

in
g

(m
ar

sh
al

lin
g

an
d

un
m

ar
sh

al
in

g)

B
ui

lt-
in

B
ui

lt-
in

B
ui

lt-
in

/W
SR

F
Su

pp
or

te
d

/
pl

ug
gi

ng
ex

te
ns

io
n

N
on

e
B

ui
lt-

in
 /

Ja
va

X

M
L

to
ol

in
g

89

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

R
eq

ui
re

m
en

t/T
oo

lk
it

JX
T

A
W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA
JA

D
E

D
IE

T
J2

SE

Fa
ilu

re
 M

an
ag

em
en

t i
n

co
m

m
un

ic
at

io
n

B
ui

lt-
in

B
ui

lt-
in

 /
SO

A
P

fa
ul

ts
B

ui
lt-

in
 /

W
S

–
B

as
e

Fa
ul

t
B

ui
lt-

in
/ b

ut

m
ay

 b
lo

ck

B
ui

lt-
in

/

fa
st

-f
ai

l

B
ui

lt-
in

 /
R

M
I

re
m

ot
e

ex
ce

pt
io

ns

O
ve

rla
y

N
et

w
or

k

O
ve

rl
ay

 N
et

w
or

k
co

ns
tr

uc
tio

n
&

m
ai

nt
en

an
ce

B
ui

lt-
in

N
on

e
N

on
e

N
on

e
N

on
e

N
on

e

Pe
er

 g
ro

up
in

g
B

ui
lt-

in
 /

JX
TA

G

ro
up

s
N

on
e

B
ui

lt-
in

/W
S-

Se
rv

ic
e

G
ro

up

N
on

e
B

ui
lt-

in
 /

Fa
m

ily
Ta

gs
N

on
e

K
ey

 b
as

ed
 r

ou
tin

g
B

ui
lt-

in
 /

SR
D

I
N

on
e

N
on

e
N

on
e

Su
pp

or
te

d
/

pl
ug

gi
ng

N
on

e

R
es

ou
rc

e
D

is
co

ve
ry

A
dv

er
tis

em
en

t &
 se

ar
ch

B

ui
lt-

in
 /

Jx
ta

A
dv

s
B

ui
lt-

in
 /

W
SD

L/
U

D
D

I
B

ui
lt-

in
 /

G
lo

bu
s

In
fo

rm
at

io
n

Se
rv

ic
es

B
ui

lt-
in

 /
FI

PA
D

F
Su

pp
or

te
d

/p
lu

gg
in

g
A

R
C

La
ye

r

B
ui

lt-
in

 /
JN

D
I

M
at

ch
m

ak
in

g
B

ui
lt-

in
 /

R
ic

h
B

ui
lt-

in
 /

B
as

ic

N
on

e
B

ui
lt-

in
 /

R
ic

h
N

on
e

B
ui

lt-
in

 /
JN

D
I

90

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

R
eq

ui
re

m
en

t/T
oo

lk
it

JX
T

A
W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA
JA

D
E

D
IE

T
J2

SE

C
ac

he
 m

an
ag

em
en

t
B

ui
lt-

in
 /

ef
fic

ie
nt

 N
on

e
B

ui
lt-

in
 /

G
A

SS

N
on

e
N

on
e

N
on

e

Pu
bl

ic
at

io
n/

su
bs

cr
ip

tio
n

of
 in

fo
rm

at
io

n
ch

an
ge

s

N
on

e
Su

pp
or

te
d

/ W
S-

N
ot

ifi
ca

tio
n

B
ui

lt-
in

 /
W

S-
N

ot
ifi

ca
tio

n
B

ui
lt-

in
N

on
e

N
on

e

Se
cu

rit
y

&
 R

ep
ut

at
io

n

A
ge

nt
 a

ut
he

nt
ic

at
io

n
B

ui
lt-

in
Su

pp
or

te
d

/W
s-

B
ui

lt-
in

 /W
SR

F
Se

cu
rit

y
Se

cu
rit

y

Su
pp

or
te

d
/

Pl
ug

gi
ng

B
ui

lt-
in

/ S
SL

so
ck

et
s t

ha
t

re
qu

ire
au

th
en

tic
at

io
n

JA
A

S

A
cc

es
s a

ut
ho

ri
za

tio
n

(t
o

tr
ad

e
in

 a

gi
ve

n
m

ar
ke

t)
B

ui
lt-

in
Su

pp
or

te
d

/W
s-

Se
cu

rit
y

B
ui

lt-
in

 /W
S-

Se
cu

rit
y,

 S
A

M
L

Su
pp

or
te

d
/

Pl
ug

gi
ng

N
on

e
JA

A
S

/
ce

rti
fic

at
es

N
o

re
pu

di
at

io
n

B
ui

lt-
in

 /J
X

TA

Se
cu

rit
y

Su
pp

or
te

d
/ W

S-
Si

gn
at

ur
e

Su
pp

or
te

d/
W

S-
A

gr
ee

m
en

t
N

on
e

N
on

e
B

ui
lt-

in
 /

D
ig

ita
l

Si
gn

at
ur

e

91

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

R
eq

ui
re

m
en

t/T
oo

lk
it

JX
T

A
W

S
 (J

A
X

-R
PC

Im

p)
W

SR
F

/O
G

SA
JA

D
E

D
IE

T
J2

SE

In
te

rf
ac

e
to

 B
as

e
pl

at
fo

rm
 se

cu
ri

ty
m

ec
ha

ni
sm

s
N

on
e

N
on

e
N

on
e

N
on

e
N

on
e

B
ui

lt-
in

 /
JA

A
S

E
nc

ry
pt

io
n

of
 c

om
m

un
ic

at
io

ns

B
ui

lt-
in

Su
pp

or
te

d
/W

s-
B

ui
lt-

in
 /W

S-
Se

cu
rit

y
Se

cu
rit

y

Su
pp

or
te

d
/

Pl
ug

gi
ng

B
ui

lt-
in

 /
JA

D
E-

S
B

ui
lt-

in
 /

JS
SE

T
ru

st
/r

ep
ut

at
io

n
m

ec
ha

ni
sm

s
N

on
e

 S

up
po

rte
d

/W
s-

Tr
us

t
(li

m
ite

d)

W
S-

Tr
us

t (
dr

af
t

sp
ec

ifi
ca

tio
n)

N
on

e
N

on
e

N
on

e

92

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

D
.5

.2
 T

ec
hn

ic
al

 V
ie

w

R
eq

ui
re

m
en

t
/T

oo
lk

it
JX

T
A

W
eb

 S
er

vi
ce

s
(J

A
X

-R
PC

 Im
p)

W
SR

F
/ O

G
SA

JA
D

E
D

IE
T

J2
SE

-S
ta

nd
ar

ds
-&

 P
ro

to
co

ls

-
pe

er
s,

gr
ou

ps

-
JX

TA
 p

ip
es

-

X
M

L
ad

ve
rti

se
m

en
ts

-
SO

A
P

-
W

SD
L

-
U

D
D

I
-

X
M

L

-
W

eb
 S

er
vi

ce
s

-
In

de
x

Se
rv

ic
e

-
G

rid
FT

P
-

G
rid

 S
ec

ur
ity

-
FI

PA
 A

C
L

-
A

M
S

&
 D

F
-

B
eh

av
io

ur
s

-
In

te
ra

ct
io

n
-

 P
ro

to
co

ls

-
bo

tto
m

-u
p

de
si

gn
-

de
ce

nt
ra

liz
ed

-
st

an
da

rd
ag

no
st

ic

-
JV

M
-

R
M

I
-

JN
D

I

-M
es

sa
gi

ng
C

ha
nn

el
s

-
JX

TA
 p

ip
es

, v
ar

io
us

pr
ot

oc
ol

s
-

Fi
re

w
al

l a
nd

 N
A

T
fr

ie
nd

ly

�
A

ny
 (n

or
m

al
ly

H
TP

P)
-

Fi
re

w
al

l
fr

ie
nd

ly

-
Sa

m
e

as
 W

S
(A

xi
s)

-
R

M
I,

O
R

B

-
H

TT
P,

 JM
S

by
ex

is
te

nt
pl

ug
gi

ng

-
U

D
P

an
d

TC
P

-
M

ob
ile

 a
ge

nt
s

-
A

ny
 o

th
er

 c
an

be
 p

lu
gg

ed

-
R

M
I

-
So

ck
et

s

-M
es

sa
gi

ng
-

T
yp

es

-
A

sy
nc

hr
on

ou
s

-
P2

P
/u

ni
ca

st
 o

r m
ul

tic
as

t
-

Sy
nc

hr
on

ou
s

-
Sy

nc
hr

on
ou

s
-A

sy
nc

hr
on

ou
s

-
A

sy
nc

hr
on

ou
s

-
P2

P
/

m
ec

ha
ni

sm
 n

ee
d

to
 b

e
pl

ug
ge

d

-
Sy

nc
hr

on
ou

s

-M
es

sa
gi

ng
-P

er
fo

rm
.

-(
m

s)

-
10

 x
 R

M
I

-
9

x
R

M
I

-
R

el
ie

s o
n

W
S

in
vo

ca
tio

n
(A

xi
s)

-
G

T4
 im

pr
ov

es
 4

x

G
T3

pe

rf
or

m
an

ce

-
2x

R
M

I
-

Fa
st

 fo
r U

D
P

or
 T

C
P

so
ck

et
s

-
R

es
t d

ep
en

ds

on
 tr

an
sp

or
t

pl
ug

ge
d

-
R

ou
nd

 T
rip

Ti
m

e
(R

TT
)

av
er

ag
e

:
-

0.
25

m
s

-R
es

ou
rc

e
D

is
co

ve
ry

Pe
rf

or
m

an
ce

-
A

ve
ra

ge
, X

M
L

pr
oc

es
si

ng
 p

en
al

iz
es

-

G
oo

d
fo

r k
ey

 b
as

ed

ro
ut

in
g

-
A

ve
ra

ge
(jU

D
D

I)
-

D
eg

ra
da

tio
n

fo
r c

on
cu

rr
en

t
pu

bl
ic

at
io

ns

-
Ex

pe
ct

ed
 to

 b
e

A
ve

ra
ge

-
In

de
x

Se
rv

ic
e

re
fa

ct
or

ed
 in

G

T4
 (w

ith
 JN

D
I)

-
G

oo
d

fo
r s

m
al

l
an

d
 m

ed
iu

m
si

ze
d

M
A

S
-

A
ve

ra
ge

/B
ad

fo
r f

ed
er

at
ed

D

Fs

-
G

oo
d

fo
r

kn
ow

n
ho

st
ed

ag
en

ts
-

D
is

co
ve

ry
de

pe
nd

s o
n

pl
ug

ge
d

m
ec

ha
ni

sm

-
D

ep
en

ds
 o

n
pl

ug
ge

d
se

rv
ic

e
-

(e
.g

. J
N

D
I o

ve
r

LD
A

P)

93

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

R
eq

ui
re

m
en

t
/T

oo
lk

it
JX

T
A

W
eb

 S
er

vi
ce

s
(J

A
X

-R
PC

 Im
p)

W
SR

F
/ O

G
SA

JA
D

E
D

IE
T

J2
SE

-S
ca

la
bi

lit
y

-N
º A

ge
nt

s
-

/ N
od

es

/R
es

ou
rc

es

-
Ex

pe
ct

ed
 to

 b
e

V
er

y
G

oo
d

-
--

--
-

Ex
pe

ct
ed

-
to

 b
e

lim
ite

d
du

e
to

 c
en

tra
l

m
an

ag
em

en
t

-
G

T4
 d

ev
el

op
er

s
ex

pe
ct

 >
>

10
00

0

-
Ex

pe
ct

ed
 to

be

>1
00

00
-

Pr
ov

ed
 to

 b
e

>5
00

-

-
Ex

pe
ct

ed
 to

 b
e

>>
10

00
00

-
Pr

ov
ed

 to
 b

e
>1

00
00

-
D

ep
en

ds
 o

n
pl

ug
ge

d
se

rv
ic

e
-

(e
.g

. J
N

D
I o

ve
r

LD
A

P)

94

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

D
.5

.3
 D

ev
el

op
m

en
t V

ie
w

R
eq

ui
re

m
en

t/

T
oo

lk
it

JX
T

A
W

eb
Se

rv
ic

es
W

SR
F

/O
G

SA

(J
A

X
-R

PC
 Im

p)

JA
D

E
D

IE
T

J2
SE

-P
ro

gr
am

m
in

g
-L

an
gu

ag
e

-J
av

a
-L

an
gu

ag
e

ne
ut

ra
l

-J
av

a
-J

av
a

-J
av

a
-J

av
a

-M
at

ur
ity

 a
nd

C

om
m

un
ity

Su
pp

or
t

-
Su

n
su

pp
or

ta
nd

ac
tiv

e
w

eb
si

te
 a

nd

co
m

m
un

ity

-V
er

y
go

od
, m

an
y

co
m

pa
ni

es
 a

nd
pr

oj
ec

ts
-I

nd
us

tri
al

 st
an

da
rd

-M
an

y
in

vo
lv

ed
co

m
pa

ni
es

-
G

T3
 st

ill
 b

ug
gy

-
A

ct
iv

e
w

eb
si

te
an

d
co

m
m

un
ity

-A
ge

nt
 c

om
m

un
ity

su
pp

or
t

-F
IP

A
 st

an
da

rd

-B
T

pr
od

uc
t

-V
er

y
sm

al
l

co
m

m
un

ity

-S
un

 a
nd

 v
er

y
ac

tiv
e

w
eb

si
te

 a
nd

co

m
m

un
ity

-P
op

ul
ar

 fo
r

ne
tw

or
ke

d
ap

p
-A

PI
-C

om
pl

ex
 A

PI
 w

ith

m
an

y
pr

ot
oc

ol
s

-
Ja

va
 A

PI
-

C
om

pl
ex

 A
PI

-
W

SR
F

re
fa

ct
or

iz
at

io
n

m
ak

es
 it

 c
le

ar
er

-N
ot

 m
od

ul
ar

in
ge

ne
ra

l
-

A
llo

w
s n

ew

tra
ns

po
rts

 to
 b

e
pl

ug
ge

d

-S
im

pl
e

A
PI

-

-C
om

pl
et

e
an

d
fu

nc
tio

na
l

-
Sp

ec
ifi

c
su

pp
or

t
fo

r n
et

w
or

ke
d

ap
p

-M
od

ul
ar

ity
&

in
te

gr
ab

ili
ty

-P
2P

 st
an

da
rd

pr

ot
oc

ol
s

-A
llo

w
s f

ew

ex
te

ns
io

ns

-I
nt

er
op

er
ab

ili
ty

-H
TT

P
/X

M
L

-L
ac

ks
 st

an
da

rd
s

fo
r c

om
po

si
te

 o
r

fe
de

ra
te

d
U

D
D

Is

--
G

rid
 S

er
vi

ce
s

in
te

ro
pe

ra
bi

lit
y

-

-P
2P

 st
an

da
rd

pr

ot
oc

ol
s

-A
llo

w
s f

ew

ex
te

ns
io

ns

-
M

od
ul

ar
:

m
in

im
um

 c
or

e
+

re
us

ab
le

-P
la

tfo
rm

in
de

pe
nd

en
ce

-O
bj

ec
t o

rie
nt

ed

an
d

ric
h

cl
as

s
lib

ra
ry

-A
va

ila
bl

e
to

ol
in

g
-F

ew
 o

r n
o

to
ol

in
g

-
Ex

te
ns

iv
e

-
-F

ew
 o

r i
ne

xi
st

en
t

-W
SR

F
 le

ve
ra

ge
s

W
S

to
ol

in
g

-S
ni

ff
er

 a
nd

de

bu
gg

er
 fo

r M
A

S
pr

ov
id

ed

-S
om

e
su

pp
or

t f
or

M

A
S

vi
su

al
iz

at
io

n
-A

 lo
t o

f t
oo

ls

-M
an

y
ID

Es

-D
eb

ug
ge

rs
-S

pe
ci

fic
at

io
ns

 &

-D
oc

um
en

ta
tio

n
-C

om
pl

ex
sp

ec
ifi

ca
tio

n
-A

bu
nd

an
t

do
cu

m
en

ta
tio

n

-E
xt

en
si

ve
-S

om
et

im
es

 to
o

co
m

pl
ex

sp
ec

ifi
ca

tio
ns

-T
oo

 c
om

pl
ex

sp
ec

ifi
ca

tio
ns

-W
SR

F
al

le
vi

at
es

th

is
 p

ro
bl

em

-C
om

pl
ex

 F
IP

A

Sp
ec

ifi
ca

tio
n

-A
bu

nd
an

t
do

cu
m

en
ta

tio
n

-
To

o
si

m
pl

e
do

cu
m

en
ta

tio
n

-E
xt

en
si

ve
 a

nd

te
st

ed
do

cu
m

en
ta

tio
n

95

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

R
eq

ui
re

m
en

t/

T
oo

lk
it

JX
T

A
W

eb
Se

rv
ic

es

(J
A

X
-R

PC
 Im

p)

W
SR

F
/O

G
SA

JA
D

E
D

IE
T

J2
SE

-T
ut

or
ia

ls
, b

oo
ks

D
ev

el
op

er
s s

up
. &

m

ai
lin

g-
lis

ts

--
 S

om
e

ex
is

te
nt

--
 T

oo
 si

m
pl

e
ex

am
pl

es
, f

ew
tro

ub
le

sh
oo

tin
g

se
ct

io
ns

--
 A

 lo
t t

o
try

--
 M

an
y

de
ve

lo
pe

rs
in

 W
S

co
m

m
un

ity

--
 V

er
y

po
or

--

 T
oo

 m
an

y
de

sc
rip

tio
n

pa
pe

rs
,

fe
w

 c
od

e
ex

am
pl

es

--
 S

om
e

ex
is

te
nt

--
 C

ov
er

s o
nl

y
ba

si
c

is
su

es
--

 A
ct

iv
e

m
ai

lin
g

lis
t

--
 Ju

st
 o

ne
 tu

to
ria

l
--

 V
er

y
go

od
--

 E
xt

en
si

ve
 a

nd

w
el

l p
ro

ve
d

--
 M

an
y

re
us

ab
le

co

de
 a

va
ila

bl
e

on
lin

e

96

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

97

D.6 Relevant Standards

D.6.1 Web Services Standards

� SOAP: W3C (www.w3c.org) standard

SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment. It uses XML
technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols. The
framework has been designed to be independent of any particular programming
model and other implementation specific semantics.

Two major design goals for SOAP are simplicity and extensibility (see XMLP
Requirements [XMLP Requirements]). SOAP attempts to meet these goals by
omitting, from the messaging framework, features that are often found in distributed
systems. Such features include but are not limited to "reliability", "security",
"correlation", "routing", and "Message Exchange Patterns" (MEPs). While it is
anticipated that many features will be defined, this specification provides specifics
only for two MEPs. Other features are left to be defined as extensions by other
specifications.”

(http://www.w3.org/TR/soap12-part1)

� WSDL: W3C (www.w3c.org) standard

WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented
information. The operations and messages are described abstractly, and then bound to
a concrete network protocol and message format to define an endpoint. Related
concrete endpoints are combined into abstract endpoints (services). WSDL is
extensible to allow description of endpoints and their messages regardless of what
message formats or network protocols are used to communicate.

A WSDL document defines services as collections of network endpoints, or ports. In
WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of
abstract definitions: messages, which are abstract descriptions of the data being
exchanged, and port types which are abstract collections of operations. The concrete
protocol and data format specifications for a particular port type constitute a reusable
binding. A port is defined by associating a network address with a reusable binding,
and a collection of ports define a service. Hence, a WSDL document uses the
following elements in the definition of network services:

(http://www.w3.org/TR/wsdl)

� UDDI: Oasis (www.oasis-open.org) standard

Universal Description, Discovery and Integration, or UDDI, is the name of a group of
web-based registries that expose information about a business or other entity and its

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

98

technical interfaces (or API’s). These registries are run by multiple Operator Sites,
and can be used by anyone who wants to make information available about one or
more businesses or entities, as well as anyone that wants to find that information.
There is no charge for using the basic services of these operator sites.

By accessing any of the public UDDI Operator Sites, anyone can search for
information about web services that are made available by or on behalf of a business.
The benefit of having access to this information is to provide a mechanism that
allows others to discover what technical programming interfaces are provided for
interacting with a business for such purposes as electronic commerce, etc. The
benefit to the individual business is increased exposure in an electronic commerce
enabled world.

The information that a business can register includes several kinds of simple data that
help others determine the answers to the questions “who, what, where and how”.
Simple information about a business – information such as name, business identifiers
(D&B D-U-N-S Number®, etc.), and contact information answers the question
“Who?” “What?” involves classification information that includes industry codes
and product classifications, as well as descriptive information about the services that
the business makes available. Answering the question “Where?” involves registering
information about the URL or email address (or other address) through which each
type of service is accessed. Finally, the question “How?” is answered by registering
references to information about interfaces and other properties of a given service.
These service properties describe how a particular software package or technical
interface functions. These references are called tModels in the UDDI documentation

(http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm)

� WS-Security: is a OASIS (www.open-oasis.org) standard

This specification proposes a standard set of SOAP [SOAP11, SOAP12] extensions
that can be used when building secure Web services to implement message content
integrity and confidentiality. This specification refers to this set of extensions and
modules as the “Web Services Security: SOAP Message Security” or “WSS: SOAP
Message Security”.

This specification is flexible and is designed to be used as the basis for securing Web
services within a wide variety of security models including PKI, Kerberos, and SSL.
Specifically, this specification provides support for multiple security token formats,
multiple trust domains, multiple signature formats, and multiple encryption
technologies. The token formats and semantics for using these are defined in the
associated profile documents.

This specification provides three main mechanisms: ability to send security tokens as
part of a message, message integrity, and message confidentiality. These mechanisms
by themselves do not provide a complete security solution for Web services. Instead,
this specification is a building block that can be used in conjunction with other Web
service extensions and higher-level application-specific protocols to accommodate a
wide variety of security models and security technologies.

These mechanisms can be used independently (e.g., to pass a security token) or in a
tightly coupled manner (e.g., signing and encrypting a message or part of a message
and providing a security token or token path associated with the keys used for signing
and encryption).

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

99

(http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0.pdf)

� WS-Trust (non standard specification proposed by Microsoft and IBM)

WS-Trust will describe the model for establishing both direct and brokered trust
relationships (including third parties and intermediaries).

This specification describes a model for brokering trust through the creation of
Security Token Services (STS). These security token issuance services build on WS-
Security to transfer the requisite security tokens in a manner that ensures the integrity
and confidentiality of those tokens.

(http://www-106.ibm.com/developerworks/library/ws-trust/)

� WS.-Notification: W3C (www.w3c.org) standard not yet approved.

The Event-driven, or Notification-based, interaction pattern is a commonly used
pattern for inter-object communications. Examples exist in many domains, for
example in publish/subscribe systems provided by Message Oriented Middleware
vendors, or in system and device management domains.

The WS-Notification family of specifications defines a standard Web services
approach to notification. It defines the normative Web services interfaces for two of
the important roles in the notification pattern, namely the NotificationProducer and
NotificationConsumer roles. This specification includes standard message exchanges
to be implemented by service providers that wish to act in these roles, along with
operational requirements expected of them

In addition, this specification defines the Web services interface for the
NotificationBroker. A NotificationBroker is an intermediary, which, among other
things, allows publication of messages from entities that are not themselves service
providers. It includes standard message exchanges to be implemented by
NotificationBroker service providers along with operational requirements expected of
service providers and requestors that participate in brokered notifications.

(http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf,

http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BrokeredNotification-1.2-draft-
01.pdf)

� WS-Addressing: is a W3C (www.w3c.org) standard.

WS-Addressing provides transport-neutral mechanisms to address Web services and
messages. Specifically, this specification defines XML elements to identify Web
service endpoints and to secure end-to-end endpoint identification in messages. This
specification enables messaging systems to support message transmission through
networks that include processing nodes such as endpoint managers, firewalls, and
gateways in a transport-neutral manner.

Web Services Addressing (WS-Addressing) defines two interoperable constructs that
convey information that is typically provided by transport protocols and messaging
systems. These constructs normalize this underlying information into a uniform
format that can be processed independently of transport or application. The two
constructs are endpoint references and message information headers.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

100

A Web service endpoint is a (referenceable) entity, processor, or resource where Web
service messages can be targeted. Endpoint references convey the information needed
to identify/reference a Web service endpoint, and may be used in several different
ways: endpoint references are suitable for conveying the information needed to
access a Web service endpoint, but are also used to provide addresses for individual
messages sent to and from Web services. To deal with this last usage case this
specification defines a family of message information headers that allows uniform
addressing of messages independent of underlying transport. These message
information headers convey end-to-end message characteristics including addressing
for source and destination endpoints as well as message identity.

Both of these constructs are designed to be extensible and re-usable so that other
specifications can build on and leverage endpoint references and message
information headers.

(http://www.w3.org/Submission/ws-addressing/)

� WSRF: Oasis (www.oasis-open.org) family of standards to manage stateful services

WS-Resource specification defines what the relationship between Web services and
stateful resources is. This relationship is described as the WS-Resource Access
Pattern. In the WS-Resource Access Pattern, messages to a Web service may include
a component that identifies a stateful resource to be used in the execution of the
message. The composition of a stateful resource and a Web service is a WS-
Resource.

For more information see WSRF/OGSA subsection D.2.3, or available links:

(http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-Resource-1.2-draft-02.pdf,

http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-ResourceProperties-1.2-draft-
05.pdf,

http://docs.oasis-open.org/wsrf/2004/11/wsrf-WS-ServiceGroup-1.2-draft-03.pdf)

� WS-Agreement: Global Grid Forum (www.ggf.org)

The objective of the WS-Agreement specification is to define a language and a
protocol for advertising the capabilities of service providers and creating agreements
based on creational offers, and for monitoring agreement compliance at runtime.

The goals of WS-Agreement are to standardize the terminology, concepts, overall
agreement structure with types of agreement terms, agreement template with creation
constraints and a set of port types and operations for creation, termination and
monitoring of agreements, including WSDL needed to express the message
exchanges and resources needed to express the state.

(http://www.ggf.org/Public_Comment_Docs/Documents/Public_Comment_2004/WS
-AgreementSpecification_v2.pdf)

� WS-Reliability: Oasis (www.oasis-open.org) standard for web services reliable
messaging.

WS-Reliability is a SOAP-based specification that fulfils reliable messaging
requirements critical to some applications of Web Services. SOAP over HTTP is not
sufficient when an application-level messaging protocol must also guarantee some

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

101

level of reliability and security. This specification defines reliability in the context of
current Web Services standards.

Reliable Messaging (RM) is the execution of a transport-agnostic, SOAP-based
protocol providing quality of service in the reliable delivery of messages. There are
two aspects to Reliable Messaging; both must be equally addressed when specifying
RM features: (1) The “wire” protocol aspect. RM is a protocol, including both
specific message headers and specific message choreographies, between a sending
party and a receiving party. (2) The quality of service (QoS) aspect. RM defines a
quality of messaging service to the communicating parties, viz., the users of the
messaging service. This assumes a protocol between these users and the provider of
this service (i.e., the reliable messaging middleware). This protocol is defined by a set
of abstract operations: Submit, Deliver, Notify, and Respond.

Reliable messaging requires the definition and enforcement of contracts between:

The Sending and Receiving message processors (contracts about the wire protocol)

The messaging service provider and the users of the messaging service (contracts
about quality of service).

(http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-CD1.086.pdf

D.6.2 WSRF Related Standards
The WSRF specification: The Web Services Resources Framework is a collection of five
different specifications.

� WS-ResourceProperties: A resource is composed of zero or more resource properties.
For example, in the figure shown above each resource has three resource properties:
Filename, Size, and Descriptors. WS-ResourceProperties specifies how resource
properties are defined and accessed. As we'll see later on when we start programming,
the resource properties are defined in the Web service's WSDL interface description.

� WS-ResourceLifecycle: Resources have non-trivial lifecycles. In other words, they're
not a static entity that is created when our server starts and destroyed when our server
stops. Resources can be created and destroyed at any time. The WS-ResourceLifecycle
supplies some basic mechanisms to manage the lifecycle of our resources.

� WS-RenewableReferences: Once we have a WS-Resource's endpoint reference, there
might be some cases where we'll need to renew that reference if it becomes invalid.
The WS-RenewableReferences specification defines the mechanisms to do this.

� WS-ServiceGroup: We will often be interested in managing groups of Web Services
or groups of WS-Resources, and performing operations such as 'add new service to
group', 'remove this service from group', and (more importantly) 'find a service in the
group that meets condition FOOBAR'. The WS-ServiceGroup specifies how exactly
we should go about grouping services or WS-Resources together. Although the
functionality provided by this specification is very basic, it is nonetheless the base of
more powerful discovery services (such as GT4's IndexService) which allow us to

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

102

group different services together and access them through a single point of entry (the
service group).

� WS-BaseFaults: Finally, this specification aims to provide a standard way of reporting
faults when something goes wrong during a WS-Service invocation.

D.7 References
[Apac05] http://ws.apache.org/

[Axis05] http://ws.apache.org/axis/

[BGN04] K. Burbeck, D. Garpe, and S. Nadjm-Tehrani, Scale-up and Performance Studies of
Three Agent Platforms, in Proceedings of International Performance, Communication and
Computing Conference, Middleware Performance workshop., (Phoenix, Arizona, USA), pp.
857--863, Apr. 2004

[BoHo03] E. Bonsma and C. Hoile, "A distributed implementation of the SWAN Peer-to-Peer
look-up system using mobile agents”, 1st International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2002), AAMAS2002, July 2002, Bologna, Italy.

[Borj05] The Globus Toolkit 4 Programmer's Tutorial, http://gdp.globus.org/gt4-tutorial/

[Cdbi04] CDBI Forum(2004), “Web Services Stack”,
http://roadmap.cbdiforum.com/reports/protocols/index.php

[Chiu04] Chiu, Kenneth, Web Services Performance: A Survey of Issues and Solutions, 8th
Multi-conference on Systemics, Cybernetics and Informatics: SCI 2004

[Chor05] http://www.pdos.lcs.mit.edu/chord/

[Cora05] http://www.scs.cs.nyu.edu/coral/

[Cort02] E. Cortese, F. Quarta, G. Vitaglione, “Scalability and Performance of JADE
MessageTransport System”, AAMAS Workshop on Agenticies, Bologna, July 2002.

[Coug05] http://www.cougaar.org/

[CTGK+04] Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek, M. Szymczak M. Paprzycki,
Testing the Efficiency of JADE Agent Platform, in: Proceedings of ISPDC 2004, IEEE CS
Press, Los Angeles, 2004, 49-56

[DieA04]DIET Overview http://dietagents.sourceforge.net/PlatformOverview.html

[DIET05] http://diet-agents.sourceforge.net/Index.html

[FIPA05] http://www.fipa.org/

[Ggf04] Globus Grid Forum (2004) [url]

[Glob05] http://www.globus.org/

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

103

[GT405]http://www-unix.globus.org/toolkit/docs/development/4.0-
drafts/GT4Facts/index.html

[HaDe03a] Halepovic, E. and Deters, R. The Costs of Using JXTA. To appear at The Third
IEEE International Conference on Peer-to-Peer Computing, Linköping, Sweden, 2003

[HaDe03b] E. Halepovic and R. Deters, JXTA Performance Study. PACRIM'03 Conference,
Victoria, BC, Canada, 2003

[HDT04] E. Halepovic, R. Deters, and B. Traversat, Performance Evaluation of JXTA
Rendezvous. DOA 2004 Conference, Agia Napa, Cyprus, 2004

[HoBo02] C. Hoile and E. Bonsma , Towards a minimal hosting specification for open agent
systems : the lessons of IP", 1st International Workshop on "Challenges in Open Agent
Systems", AAMAS2002, July 2002, Bologna, Italy.

[J2SE05] http://java.sun.com/

[JadA04] Jade programmers guide, http://jade.tilab.com/doc/programmersguide.pdf

[JADE05] http://jade.tilab.com/

[Jadx04] The Jadex project at Distributed Systems and Information Systems Hamburg
University. (See http://vsis-www.informatik.uni-hamburg.de/projects/jadex/)

[JaRp05] http://java.sun.com/xml/jaxrpc/index.jsp

[JNDI05] http://java.sun.com/products/jndi/

[JUDD05] http://ws.apache.org/juddi/

[Juri04] M. Juric et al. Java RMI, RMI Tunneling and Web Services Comparison and
Performance Analysis. ACM SIGPLAN Notices, 39(5), May 2004.

[JXTA05] http://www.jxta.org/

[LFGL01] G. von Laszewski, I. Foster, J. Gawor, P. Lane (2001), “A Java Commodity Grid
Toolkit“, Concurrency: Practice and Experience, 13

[Li01] Li, S. 2001. JXTA: Peer-to-Peer Computing with Java, WROX: Birmingham

[LRCN03] M. Lyell, L. Rosen, M. Casagni-Simkins, D. Norris, On Software Agents and Web
Services: Usage and Design Concepts and issues, International Joint Conference on
Autonomous Agents and Multiagent Systems, Worshop on Web Services and Agent-based
software engeenering - Melbourne (Australia) 2003

[OGSA05] http://www.globus.org/ogsa/

[OGSI05] http://www.globus.org/ogsa/

[P2PS05] http://www.trianacode.org/p2ps/download/index.html

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

104

[PaJe05] Paurobally, S. and Jennings, N. R. (2005) Protocol engineering for web services
conversations, Int J. Engineering Applications of Artificial Intelligence 18(2).

[Past05] http://freepastry.rice.edu/FreePastry/README-1.3.2.html

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker, A
Scalable Content-Addressable Network, Proceedings of ACM SIGCOMM 2001

[RMI05] http://java.sun.com/products/jdk/rmi/

[SAP05] http://www.ist-safeguard.org

[Sing03] http://www-106.ibm.com/developerworks/java/library/j-jxta2/

[SOAP05] http://www.w3.org/TR/soap/

[SSB04] Saez, G., Sliva, A.L., Blake, M.B. "Web Services-Based Data Management:
Evaluating the Performance of UDDI Registries" Proceedings of the International Conference
on Web Services (ICWS 2004), San Diego, CA, July 2004

[StMk04] Stratos Idreos, Manolis Koubarakis: P2P-DIET: One-Time and Continuous Queries
in Super-Peer Networks. EDBT 2004: 851-853

[Tomc05] http://jakarta.apache.org/tomcat/

[Trav03] Bernard Traversat et al (Project JXTA, May 2003), Project JXTA 2.0 Super-Peer
Virtual Network, white paper.

[Tryl05] http://www.tryllian.com/

[VQC02] G. Vitaglione, F. Quarta, E. Cortese, Scalability and Performance of JADE
Message Transport System. Presented at AAMAS Workshop on AgentCities, Bologna. July
the 16th, 2002.

[W3c04] Web Services Architecture W3C Working Group Note, D. Booth, H. Haas, F.
McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard, 11 February 2004 (See
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.)

[Wang05] Ian Wang. Peer-to-Peer Simplified), in Proceedings of 13th Annual Mardi Gras
Conference - Frontiers of Grid Applications and Technologies. To be published, 2005.

[WeSe05] http://www.w3.org/2002/ws/

[Wrig04] Todd Wright BBN Technologies, Naming Services in Multi-Agent Systems: A
Design for Agent-Based White Pages, Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume 3, New York(USA)
2004

[WSDL05] http://www.w3.org/TR/wsdl

[WSFR05] http://www.globus.org/wsrf/

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

105

Annex E – Application framework – concepts and
mechanisms
This annex contains parts of the source code of the first prototype of the Catallactic enabled
Cat-COVITE application, as well as examples of the agreement templates and offers
proposed.

E.1 WSDL file
<definitions name="Search"
 targetNamespace="http://tutorial.catnets.org/search"
 xmlns:tns="http://tutorial.catnets.org/search"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrlw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
 xmlns:gtwsdl1="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-draft-01.wsdl"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns:wsntw="http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-
01.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <import
 namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.wsdl"
 location="../wsrf/faults/WS-BaseFaults.wsdl"/>
 <import
 namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 location="../wsrf/lifetime/WS-ResourceLifetime.wsdl"/>
 <import
 namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 location="../wsrf/properties/WS-ResourceProperties.wsdl"/>
 <import
 namespace="http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 location="../wsrf/notification/WS-BaseN.wsdl"/>
 <import
 namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-draft-01.wsdl"
 location="../wsrf/servicegroup/WS-ServiceGroup.wsdl"/>
 <import
 namespace="http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 location="../wsrf/notification/WS-BaseN.wsdl" />

 <types>
 <schema
 targetNamespace="http://tutorial.catnets.org/search"
 xmlns:tns="http://tutorial.catnets.org/search"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import
 namespace="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 schemaLocation="../ws/addressing/WS-Addressing.xsd"/>
 <import
 namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-
draft-01.xsd"
 schemaLocation="../wsrf/servicegroup/WS-ServiceGroup.xsd"/>

 <element name="StatusMessage" type="xsd:string"/>
 <element name="CurrentSearch" type="xsd:string"/>
 <element name="SearchResourceProperties">
 <complexType>
 <sequence>
 <element ref="tns:StatusMessage"/>

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

106

 <element ref="tns:CurrentSearch"/>
 </sequence>
 </complexType>
 </element>

 <!--================ Add Create Support to WSDL (see SearchService.java)
===========-->
 <element name="Create">
 <complexType/>
 </element>
 <element name="CreateResponse" type="wsa:EndpointReferenceType" />

 <!--================ Add Write Support to WSDL (see SearchService.java) ===========-->
 <element name="Write" type="xsd:string" />
 <element name="WriteResponse">
 <complexType/>
 </element>

 <!-- ====== End ======-->
 </schema>
 </types>
 <!-- ========= MESSAGES ====== -->
 <message name="CreateRequest">
 <part name="CreateRequest"
 element="tns:Create" />
 </message>
 <message name="CreateResponse">
 <part name="CreateResponse"
 element="tns:CreateResponse" />
 </message>
 <message name="WriteRequest">
 <part name="WriteRequest"
 element="tns:Write" />
 </message>
 <message name="WriteResponse">
 <part name="WriteResponse"
 element="tns:WriteResponse" />
 </message>

 <!-- ========= END OF MESSAGES ====== -->
 <portType name="SearchPortType" wsrp:ResourceProperties="SearchResourceProperties">
 <operation name="GetResourceProperty">
 <input name="GetResourcePropertyRequest"
 message="wsrpw:GetResourcePropertyRequest"
 wsa:Action="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceProperties/GetResourceProperty"/>
 <output name="GetResourcePropertyResponse"
 message="wsrpw:GetResourcePropertyResponse"
 wsa:Action="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourcePropertiesGetResourcePropertyResponse"/>
 <fault name="InvalidResourcePropertyQNameFault"
 message="wsrpw:InvalidResourcePropertyQNameFault"/>
 <fault name="ResourceUnknownFault"
 message="wsrpw:ResourceUnknownFault"/>
 </operation>

 <operation name="Create">
 <input name="CreateRequest"
 message="tns:CreateRequest" />
 <output name="CreateResponse"

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

107

 message="tns:CreateResponse" />
 </operation>
 <operation name="Write">
 <input name="WriteRequest"
 message="tns:WriteRequest" />

 <output name="WriteResponse"
 message="tns:WriteResponse" />

 </operation>
 </portType>
</definitions>

E.2 The service source code
package org.catnets.tutorial.search;

import java.rmi.RemoteException;
import org.globus.wsrf.ResourceContext;
import org.apache.axis.message.addressing.EndpointReferenceType;
import org.globus.wsrf.ResourceKey;
import org.globus.wsrf.utils.AddressingUtils;

import org.catnets.SupplierWS.*;

/**
This is the code for the SearchService (QueryService in Catnets project)
*/
public class SearchService
{

 /** implementation of the 'create' operation, to create a new
 search resource
 */
 public EndpointReferenceType create(Create c) throws RemoteException
 {
 ResourceContext ctx = ResourceContext.getResourceContext();
 SearchHome home = (SearchHome)ctx.getResourceHome();
 ResourceKey key = home.create();

 // form an EPR that points to the search
 EndpointReferenceType epr;

 try
 {
 epr = AddressingUtils.createEndpointReference(ctx, key);
 } catch(Exception e)
 {
 throw new RemoteException("Could not form an EPR to new search: "+ e);
 }
 return epr;
 }

 /** Implementation of the 'write' operation, to write text onto the
 the search.
 */
 public WriteResponse write(String text) throws RemoteException
 {
 // get appropriate resource

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

108

 Search resource = (Search)ResourceContext.getResourceContext().getResource();

 String responseDotNETWS;

 try
 {
 // create an instance of the desired web service (aka the .NET web service)
 SupplierWSLocator service = new SupplierWSLocator();

 //use the factory method on the service to get the portType stub
 SupplierWSSoap port = service.getSupplierWSSoap();

 // make the actual call
 responseDotNETWS = port.getProductAsString(text);

 // set the text on it
 resource.setStatusMessage(responseDotNETWS);
 } catch(Exception e)
 {
 throw new RemoteException("Could not write the text to new search: "+ e);
 }
 return new WriteResponse();
 }
}

E.3 Agreement Template examples
<wsag:Template xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\catnets\Catnets_Query_Agreement_Template_1.xsd">
 <wsag:Name>QueryComplexServiceTemplate</wsag:Name>
 <wsag:Context>
 <wsag:AgreementInitiator>
 <local:Name>NameOfTheInitiator</local:Name>
 <local:Address>AddressOfTheInitiator</local:Address>
 </wsag:AgreementInitiator>
 <wsag:AgreementInitiatorIsServiceConsumer>true</wsag:AgreementInitiatorIsServiceConsumer>
 <wsag:StartingTime>2005-09-01T00:00:00</wsag:StartingTime>
 <wsag:TerminationTime>2005-12-25T00:00:00</wsag:TerminationTime>
 <wsag:TemplateName>QueryServiceTemplate</wsag:TemplateName>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="BasicServiceType"
wsag:ServiceName="QueryJobExecutionService">
 <job:BasicServiceType>"BasicServiceInstance"</job:BasicServiceType>
 </wsag:ServiceDescriptionTerm>

 <wsag:ServiceDescriptionTerm wsag:Name="NumberOfBasicServiceNodes"
wsag:ServiceName="QueryJobExecutionService">
 <job:NumberOfBasicServiceNodes>1</job:NumberOfBasicServiceNodes>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="NoOfQueriesInPeriodOfTime"
wsag:ServiceName="QueryJobExecutionService">
 <job:NumberOfQueriesInPeriodOfTime>100
 </job:NumberOfQueriesInPeriodOfTime>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="PeriodOfUsage"
wsag:ServiceName="QueryJobExecutionService">
 <job:PeriodOfUsage>8
 </job:PeriodOfUsage>
 </wsag:ServiceDescriptionTerm>

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

109

 <wsag:ServiceDescriptionTerm wsag:Name="PayForService"
wsag:ServiceName="QueryJobExecutionService">
 <job:PayForService>30
 </job:PayForService>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:"DBType"
wsag:ServiceName="QueryJobExecutionService">
 <job:DBType>Architectural/Engineering/Contruction
 </job:DBType>
 <job:ResponseTimePerRequest>10
 </job:ResponseTimePerRequest>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceProperties wsag:ServiceName="QueryJobExecutionService">
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="startTime"
wsag:Metric="job:startTime">
 <wsag:Location/>
 </wsag:Variable>
 </wsag:VariableSet>
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="endTime"
wsag:Metric="job:endTime">
 <wsag:Location/>
 </wsag:Variable>
 </wsag:VariableSet>
 </wsag:ServiceProperties>
 <wsag:GuaranteeTerm wsag:Name="MinStartTime">
 <wsag:ServiceScope>
 <wsag:ServiceName>QueryJobExecutionService</wsag:ServiceName>
 </wsag:ServiceScope>
 <wsag:ServiceLevelObjective>startTime IS_NOT_AFTER 2005-09-
25T08:00:00</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:GuaranteeTerm wsag:Name="MaxEndTime">
 <wsag:ServiceScope>
 <wsag:ServiceName>QueryJobExecutionService</wsag:ServiceName>
 </wsag:ServiceScope>
 <wsag:ServiceLevelObjective>endTime IS_BEFORE 2005-09-
25T16:00:00</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
 <wsag:CreationConstraints>
 <wsag:Item wsag:Name="BasicServiceType">

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

110

 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:basicService
Type</wsag:Location>
 <!-- for each domain-specific service description <job:basicServiceType>,
 constrain the value of that element (i.e. reduce list of possible
 BasicServiceTypes)
 -->
 </wsag:Item>
 <wsag:Item wsag:Name="NumberOfBasicServiceNodes">
 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:numberOfB
asicServiceNodes</wsag:Location>
 <!-- <job: numberOfBasicServiceNodes> is allowed, but must be within the range
 <xs:minInclusive xs:value="1"/>
 <xs:maxInclusive xs:value="5"/>
 </wsag:Item>
 <wsag:Item wsag:Name="NoOfQueriesInPeriodOfTime">
 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:numberOfQ
ueriesInPeriodOfTime</wsag:Location>
 <!--<job: numberOfQueriesInPeriodOfTime> is allowed; but must not be
 greater than 150 queries/minute
 -->
 <xs:maxInclusive xs:value="150"/>
 </wsag:Item>
 <wsag:Item wsag:Name="PeriodOfUsage">
 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:periodOfUs
age</wsag:Location>
 <!--<job: periodOfUsage> is allowed; but must be within a range (number of hours of
usage the service)
 -->
 <xs:minInclusive xs:value="4"/>
 <xs:maxInclusive xs:value="10"/>
 </wsag:Item>
 <wsag:Item wsag:Name="PayForService">
 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:payForServi
ce</wsag:Location>
 <!--<job: payForService> is allowed; no constrain on its value (amount of money pay
for dedicated the period of service)
 -->
 </wsag:Item>
 <wsag:Item wsag:Name="DBType">
 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:dbType</ws
ag:Location>
 <!--<job: dbType> is allowed; no constrain on its value (the type of database where
the query job is executed)
 -->
 </wsag:Item>
 <wsag:Item wsag:Name="ResponseTimePerQuery">
 <wsag:Location>/wsag:Template/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm/job:responseTi
mePerQuery</wsag:Location>
 <!--<job: responseTimePerQuery> is allowed; but must be within a range (number of
seconds per response)
 -->
 <xs:minInclusive xs:value="2"/>
 <xs:maxInclusive xs:value="10"/>
 </wsag:Item>
 </wsag:CreationConstraints>
</wsag:Template>

An agreement template lite is presented below:
<?xml version="1.0" encoding="UTF-8"?>
<AgreementTemplateLite>

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

111

 <Name>QueryComplexService</Name>
 <Context>
 <AgreementInitiator>Your Name
 </AgreementInitiator>
 <StartingTime>2005-09-01T00:00:00
 </StartingTime>
 <TerminationTime>2005-10-01T00:00:00
 </TerminationTime>
 </Context>
 <Terms>
 <BasicServiceType>QueryJobExecutionService
 </BasicServiceType>
 <NumberOfBasicServiceNodes>1 to 10
 </NumberOfBasicServiceNodes>
 <BasicServiceConstraints>
 <DBType>Architectural/Engineering/Construction
 </DBType>
 <ResponseTimePerRequest>10
 </ResponseTimePerRequest>
 </BasicServiceConstraints>
 <PayForService>100
 </PayForService>
 </Terms>
</AgreementTemplateLite>

E.4 Agreement Offer examples
<wsag:Agreement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\Catnets_Query_Agreement_Offer_1.xsd">
 <wsag:Name>QueryComplexServiceOffer</wsag:Name>
 <wsag:Context/>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceDescriptionTerm wsag:Name="BasicServiceType"
wsag:ServiceName="QueryJobExecutionService">
 <job:BasicServiceType>"BasicServiceInstance"</job:BasicServiceType>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="NumberOfBasicServiceNodes"
wsag:ServiceName="QueryJobExecutionService">
 <job:NumberOfBasicServiceNodes>1</job:NumberOfBasicServiceNodes>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="NoOfQueriesInPeriodOfTime"
wsag:ServiceName="QueryJobExecutionService">
 <job:NumberOfQueriesInPeriodOfTime>100
 </job:NumberOfQueriesInPeriodOfTime>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="PeriodOfUsage"
wsag:ServiceName="QueryJobExecutionService">
 <job:PeriodOfUsage>8
 </job:PeriodOfUsage>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:Name="PayForService"
wsag:ServiceName="QueryJobExecutionService">
 <job:PayForService>30
 </job:PayForService>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceDescriptionTerm wsag:"DBType"
wsag:ServiceName="QueryJobExecutionService">
 <job:DBType>Architectural/Engineering/Contruction
 </job:DBType>
 <job:ResponseTimePerRequest>10

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

112

 </job:ResponseTimePerRequest>
 </wsag:ServiceDescriptionTerm>
 <wsag:ServiceProperties wsag:ServiceName="QueryJobExecutionService">
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="startTime"
wsag:Metric="job:startTime">
 <wsag:Location/>
 </wsag:Variable>
 </wsag:VariableSet>
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="endTime"
wsag:Metric="job:endTime">
 <wsag:Location/>
 </wsag:Variable>
 </wsag:VariableSet>
 </wsag:ServiceProperties>
 <wsag:GuaranteeTerm wsag:Name="MinStartTime">
 <wsag:ServiceScope>
 <wsag:ServiceName>QueryJobExecutionService</wsag:ServiceName>
 </wsag:ServiceScope>
 <wsag:ServiceLevelObjective>startTime IS_NOT_AFTER 2005-09-
25T08:00:00</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 <wsag:GuaranteeTerm wsag:Name="MaxEndTime">
 <wsag:ServiceScope>
 <wsag:ServiceName>QueryJobExecutionService</wsag:ServiceName>
 </wsag:ServiceScope>
 <wsag:ServiceLevelObjective>endTime IS_BEFORE 2005-09-
25T16:00:00</wsag:ServiceLevelObjective>
 <wsag:BusinessValueList>
 <wsag:Penalty>
 <wsag:AssessmentInterval>
 <wsag:Count>1</wsag:Count>
 </wsag:AssessmentInterval>
 <wsag:ValueExpression>5</wsag:ValueExpression>
 </wsag:Penalty>
 </wsag:BusinessValueList>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
</wsag:Agreement>

An agreement offer lite is presented below:
<?xml version="1.0" encoding="UTF-8"?>
<AgreementOfferLite>

<Name>QueryComplexService</Name>
<Context>
 <AgreementInitiator>Your Name
 </AgreementInitiator>
 <StartingTime>2005-09-01T00:00:00
 </StartingTime>
 <TerminationTime>2005-10-01T00:00:00
 </TerminationTime>

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

113

</Context>
<Terms>
 <BasicServiceType>QueryJobExecutionService
 </BasicServiceType>
 <NumberOfBasicServiceNodes>1
 </NumberOfBasicServiceNodes>
 <BasicServiceConstraints>
 <DBType>Architectural/Engineering/Construction
 </DBType>
 <ResponseTimePerRequest>10
 </ResponseTimePerRequest>
 </BasicServiceConstraints>
 <PayForService>100
 </PayForService>
</Terms>

</AgreementOfferLite>

ISSN

In this document the Cat-COVITE Application for
use in the CATNETS Project is introduced and
motivated. Furthermore an introduction to the
catallactic middleware and Web Services
Agreement (WS-Agreement) concepts is given as
a basis for the future work. Requirements for the
application of Cat-COVITE with in catallactic
systems are analysed. Finally the integration of
the Cat-COVITE application and the catallactic
middleware is described.

1864-9300

