4,513 research outputs found

    Adversarial Finetuning with Latent Representation Constraint to Mitigate Accuracy-Robustness Tradeoff

    Full text link
    This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degrades the standard accuracy, thus yielding the tradeoff. To mitigate this tradeoff, we propose a novel AT method called ARREST, which comprises three components: (i) adversarial finetuning (AFT), (ii) representation-guided knowledge distillation (RGKD), and (iii) noisy replay (NR). AFT trains a DNN on adversarial examples by initializing its parameters with a DNN that is standardly pretrained on clean examples. RGKD and NR respectively entail a regularization term and an algorithm to preserve latent representations of clean examples during AFT. RGKD penalizes the distance between the representations of the standardly pretrained and AFT DNNs. NR switches input adversarial examples to nonadversarial ones when the representation changes significantly during AFT. By combining these components, ARREST achieves both high standard accuracy and robustness. Experimental results demonstrate that ARREST mitigates the tradeoff more effectively than previous AT-based methods do.Comment: Accepted by International Conference on Computer Vision (ICCV) 202

    With False Friends Like These, Who Can Notice Mistakes?

    Full text link
    Adversarial examples crafted by an explicit adversary have attracted significant attention in machine learning. However, the security risk posed by a potential false friend has been largely overlooked. In this paper, we unveil the threat of hypocritical examples -- inputs that are originally misclassified yet perturbed by a false friend to force correct predictions. While such perturbed examples seem harmless, we point out for the first time that they could be maliciously used to conceal the mistakes of a substandard (i.e., not as good as required) model during an evaluation. Once a deployer trusts the hypocritical performance and applies the "well-performed" model in real-world applications, unexpected failures may happen even in benign environments. More seriously, this security risk seems to be pervasive: we find that many types of substandard models are vulnerable to hypocritical examples across multiple datasets. Furthermore, we provide the first attempt to characterize the threat with a metric called hypocritical risk and try to circumvent it via several countermeasures. Results demonstrate the effectiveness of the countermeasures, while the risk remains non-negligible even after adaptive robust training.Comment: AAAI 202

    Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples

    Full text link
    Evaluating robustness of machine-learning models to adversarial examples is a challenging problem. Many defenses have been shown to provide a false sense of security by causing gradient-based attacks to fail, and they have been broken under more rigorous evaluations. Although guidelines and best practices have been suggested to improve current adversarial robustness evaluations, the lack of automatic testing and debugging tools makes it difficult to apply these recommendations in a systematic manner. In this work, we overcome these limitations by (i) defining a set of quantitative indicators which unveil common failures in the optimization of gradient-based attacks, and (ii) proposing specific mitigation strategies within a systematic evaluation protocol. Our extensive experimental analysis shows that the proposed indicators of failure can be used to visualize, debug and improve current adversarial robustness evaluations, providing a first concrete step towards automatizing and systematizing current adversarial robustness evaluations. Our open-source code is available at: https://github.com/pralab/IndicatorsOfAttackFailure

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Strength-Adaptive Adversarial Training

    Full text link
    Adversarial training (AT) is proved to reliably improve network's robustness against adversarial data. However, current AT with a pre-specified perturbation budget has limitations in learning a robust network. Firstly, applying a pre-specified perturbation budget on networks of various model capacities will yield divergent degree of robustness disparity between natural and robust accuracies, which deviates from robust network's desideratum. Secondly, the attack strength of adversarial training data constrained by the pre-specified perturbation budget fails to upgrade as the growth of network robustness, which leads to robust overfitting and further degrades the adversarial robustness. To overcome these limitations, we propose \emph{Strength-Adaptive Adversarial Training} (SAAT). Specifically, the adversary employs an adversarial loss constraint to generate adversarial training data. Under this constraint, the perturbation budget will be adaptively adjusted according to the training state of adversarial data, which can effectively avoid robust overfitting. Besides, SAAT explicitly constrains the attack strength of training data through the adversarial loss, which manipulates model capacity scheduling during training, and thereby can flexibly control the degree of robustness disparity and adjust the tradeoff between natural accuracy and robustness. Extensive experiments show that our proposal boosts the robustness of adversarial training
    • …
    corecore