64 research outputs found

    Robust Component-based Network Localization with Noisy Range Measurements

    Full text link
    Accurate and robust localization is crucial for wireless ad-hoc and sensor networks. Among the localization techniques, component-based methods advance themselves for conquering network sparseness and anchor sparseness. But component-based methods are sensitive to ranging noises, which may cause a huge accumulated error either in component realization or merging process. This paper presents three results for robust component-based localization under ranging noises. (1) For a rigid graph component, a novel method is proposed to evaluate the graph's possible number of flip ambiguities under noises. In particular, graph's \emph{MInimal sepaRators that are neaRly cOllineaR (MIRROR)} is presented as the cause of flip ambiguity, and the number of MIRRORs indicates the possible number of flip ambiguities under noise. (2) Then the sensitivity of a graph's local deforming regarding ranging noises is investigated by perturbation analysis. A novel Ranging Sensitivity Matrix (RSM) is proposed to estimate the node location perturbations due to ranging noises. (3) By evaluating component robustness via the flipping and the local deforming risks, a Robust Component Generation and Realization (RCGR) algorithm is developed, which generates components based on the robustness metrics. RCGR was evaluated by simulations, which showed much better noise resistance and locating accuracy improvements than state-of-the-art of component-based localization algorithms.Comment: 9 pages, 15 figures, ICCCN 2018, Hangzhou, Chin

    More is less: Connectivity in fractal regions

    Get PDF
    Ad-hoc networks are often deployed in regions with complicated boundaries. We show that if the boundary is modeled as a fractal, a network requiring line of sight connections has the counterintuitive property that increasing the number of nodes decreases the full connection probability. We characterise this decay as a stretched exponential involving the fractal dimension of the boundary, and discuss mitigation strategies. Applications of this study include the analysis and design of sensor networks operating in rugged terrain (e.g. railway cuttings), mm-wave networks in industrial settings and vehicle-to-vehicle/vehicle-to-infrastructure networks in urban environments.Comment: 5 page

    A hybrid localization approach in 3D wireless sensor network

    Full text link
    Location information acquisition is crucial for many wireless sensor network (WSN) applications. While existing localization approaches mainly focus on 2D plane, the emerging 3D localization brings WSNs closer to reality with much enhanced accuracy. Two types of 3D localization algorithms are mainly used in localization application: the range-based localization and the range-free localization. The range-based localization algorithm has strict requirements on hardware and therefore is costly to implement in practice. The range-free localization algorithm reduces the hardware cost but at the expense of low localization accuracy. On addressing the shortage of both algorithms, in this paper, we develop a novel hybrid localization scheme, which utilizes the range-based attribute RSSI and the range-free attribute hopsize, to achieve accurate yet low-cost 3D localization. As anchor node deployment strategy plays an important role in improving the localization accuracy, an anchor node configuration scheme is also developed in this work by utilizing the MIS (maximal independent set) of a network. With proper anchor node configuration and propagation model selection, using simulations, we show that our proposed algorithm improves the localization accuracy by 38.9% compared with 3D DV-HOP and 52.7% compared with 3D centroid

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure

    Localization and security algorithms for wireless sensor networks and the usage of signals of opportunity

    Get PDF
    In this dissertation we consider the problem of localization of wireless devices in environments and applications where GPS (Global Positioning System) is not a viable option. The _x000C_rst part of the dissertation studies a novel positioning system based on narrowband radio frequency (RF) signals of opportunity, and develops near optimum estimation algorithms for localization of a mobile receiver. It is assumed that a reference receiver (RR) with known position is available to aid with the positioning of the mobile receiver (MR). The new positioning system is reminiscent of GPS and involves two similar estimation problems. The _x000C_rst is localization using estimates of time-di_x000B_erence of arrival (TDOA). The second is TDOA estimation based on the received narrowband signals at the RR and the MR. In both cases near optimum estimation algorithms are developed in the sense of maximum likelihood estimation (MLE) under some mild assumptions, and both algorithms compute approximate MLEs in the form of a weighted least-squares (WLS) solution. The proposed positioning system is illustrated with simulation studies based on FM radio signals. The numerical results show that the position errors are comparable to those of other positioning systems, including GPS. Next, we present a novel algorithm for localization of wireless sensor networks (WSNs) called distributed randomized gradient descent (DRGD), and prove that in the case of noise-free distance measurements, the algorithm converges and provides the true location of the nodes. For noisy distance measurements, the convergence properties of DRGD are discussed and an error bound on the location estimation error is obtained. In contrast to several recently proposed methods, DRGD does not require that blind nodes be contained in the convex hull of the anchor nodes, and can accurately localize the network with only a few anchors. Performance of DRGD is evaluated through extensive simulations and compared with three other algorithms, namely the relaxation-based second order cone programming (SOCP), the simulated annealing (SA), and the semi-de_x000C_nite programing (SDP) procedures. Similar to DRGD, SOCP and SA are distributed algorithms, whereas SDP is centralized. The results show that DRGD successfully localizes the nodes in all the cases, whereas in many cases SOCP and SA fail. We also present a modi_x000C_cation of DRGD for mobile WSNs and demonstrate the e_x000E_cacy of DRGD for localization of mobile networks with several simulation results. We then extend this method for secure localization in the presence of outlier distance measurements or distance spoo_x000C_ng attacks. In this case we present a centralized algorithm to estimate the position of the nodes in WSNs, where outlier distance measurements may be present
    • …
    corecore