114,658 research outputs found

    Understanding Human Mobility with Emerging Data Sources: Validation, spatiotemporal patterns, and transport modal disparity

    Get PDF
    Human mobility refers to the geographic displacement of human beings, seen as individuals or groups, in space and time. The understanding of mobility has broad relevance, e.g., how fast epidemics spread globally. After 2030, transport is likely to become the sector with the highest emissions in the 2\ub0C\ua0scenario. Better informed policy-making requires up-to-date empirical mobility data with good quality. However, the conventional methods are limited when dealing with new challenges. The prevalence of digital technologies enables a large-scale collection of human mobility traces, through social media data and GPS-enabled devices etc, which contribute significantly to the understanding of human mobility. However, their potentials for the further application are not fully exploited.This thesis uses emerging data sources, particularly Twitter data, to enhance the understanding of mobility and apply the obtained knowledge in the field of transport. The thesis answers three questions: Is Twitter a feasible data source to represent individual and population mobility? How are Twitter data used to reveal the spatiotemporal dynamics of mobility? How do Twitter data contribute to depicting the modal disparity of travel time by car vs public transit? In answering these questions, the methodological contribution of this thesis lies in the applied side of data science.Using geotagged Twitter data, mobility is firstly described by abstract metrics and physical models; in Paper A to reveal the population heterogeneity of mobility patterns using data mining techniques; and in Paper B to estimate travel demand with a novel approach to address the sparsity issue of Twitter data. In Paper C, GIS techniques are applied to combine the travel demand as revealed by Twitter data and the transportation network to give a more realistic picture of the modal disparity in travel time between car and public transit in four cities in different countries at a high spatial and temporal granularity. The validation of using Twitter data in mobility study contributes to better utilisation of this low-cost mobility data source. Compared with a static picture obtained by conventional data sources, the dynamics introduced by social media data among others contribute to better-informed policymaking and transport planning

    Analysis of human mobility patterns from GPS trajectories and contextual information

    Get PDF
    This work was supported by the EU FP7 Marie Curie ITN GEOCROWD grant (FP7- PEOPLE-2010-ITN-264994).Human mobility is important for understanding the evolution of size and structure of urban areas, the spatial distribution of facilities, and the provision of transportation services. Until recently, exploring human mobility in detail was challenging because data collection methods consisted of cumbersome manual travel surveys, space-time diaries or interviews. The development of location-aware sensors has significantly altered the possibilities for acquiring detailed data on human movements. While this has spurred many methodological developments in identifying human movement patterns, many of these methods operate solely from the analytical perspective and ignore the environmental context within which the movement takes place. In this paper we attempt to widen this view and present an integrated approach to the analysis of human mobility using a combination of volunteered GPS trajectories and contextual spatial information. We propose a new framework for the identification of dynamic (travel modes) and static (significant places) behaviour using trajectory segmentation, data mining and spatio-temporal analysis. We are interested in examining if and how travel modes depend on the residential location, age or gender of the tracked individuals. Further, we explore theorised “third places”, which are spaces beyond main locations (home/work) where individuals spend time to socialise. Can these places be identified from GPS traces? We evaluate our framework using a collection of trajectories from 205 volunteers linked to contextual spatial information on the types of places visited and the transport routes they use. The result of this study is a contextually enriched data set that supports new possibilities for modelling human movement behaviour.PostprintPeer reviewe

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges
    • …
    corecore