39,156 research outputs found

    A Quantum Many-body Wave Function Inspired Language Modeling Approach

    Full text link
    The recently proposed quantum language model (QLM) aimed at a principled approach to modeling term dependency by applying the quantum probability theory. The latest development for a more effective QLM has adopted word embeddings as a kind of global dependency information and integrated the quantum-inspired idea in a neural network architecture. While these quantum-inspired LMs are theoretically more general and also practically effective, they have two major limitations. First, they have not taken into account the interaction among words with multiple meanings, which is common and important in understanding natural language text. Second, the integration of the quantum-inspired LM with the neural network was mainly for effective training of parameters, yet lacking a theoretical foundation accounting for such integration. To address these two issues, in this paper, we propose a Quantum Many-body Wave Function (QMWF) inspired language modeling approach. The QMWF inspired LM can adopt the tensor product to model the aforesaid interaction among words. It also enables us to reveal the inherent necessity of using Convolutional Neural Network (CNN) in QMWF language modeling. Furthermore, our approach delivers a simple algorithm to represent and match text/sentence pairs. Systematic evaluation shows the effectiveness of the proposed QMWF-LM algorithm, in comparison with the state of the art quantum-inspired LMs and a couple of CNN-based methods, on three typical Question Answering (QA) datasets.Comment: 10 pages,4 figures,CIK

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore