7 research outputs found

    Understanding Computer Forensics Requirements in China via the “Panda Burning Incense” Virus Case

    Get PDF
    In March 2012, Mainland China has amended its Criminal Procedure Law, which includes the introduction of a new type of evidence, i.e., digital evidence, to the court of law. To better understand the development of computer forensics and digital evidence in Mainland China, this paper discusses the Chinese legal system in relation to digital investigation and how the current legal requirements affect the existing legal and technical usage of digital evidence at legal proceedings. Through studying the famous “Panda Burning Incense (Worm.WhBoy.cw)” virus case that happened in 2007, this paper aims to provide a better understanding of how to properly conduct computer forensics examination and present digital evidence at court of law in Mainland China

    Understanding Computer Forensics Requirements in China via the “Panda Burning Incense” Virus Case

    Get PDF
    In March 2012, Mainland China has amended its Criminal Procedure Law, which includes the introduction of a new type of evidence, i.e., digital evidence, to the court of law. To better understand the development of computer forensics and digital evidence in Mainland China, this paper discusses the Chinese legal system in relation to digital investigation and how the current legal requirements affect the existing legal and technical usage of digital evidence at legal proceedings. Through studying the famous “Panda Burning Incense (Worm.WhBoy.cw)” virus case that happened in 2007, this paper aims to provide a better understanding of how to properly conduct computer forensics examination and present digital evidence at court of law in Mainland China

    Table of Contents

    Get PDF

    Back Matter

    Get PDF

    Front Matter

    Get PDF

    A Method to Enhance the Accuracy of Digital Forensics in the Absence of Complete Evidence in Saudi Arabia

    Get PDF
    The tremendous increase in the use of digital devices has led to their involvement in the vast majority of current criminal investigations. As a result, digital forensics has increasingly become one of the most important aspects of criminal investigations. The digital forensics process involves consideration of a number of important phases in order to achieve the required level of accuracy and to reach a successful conclusion of the investigation into the digital aspects of crimes; through obtaining acceptable evidence for use in a court of law. There have been a number of models developed and produced since 1984 to support the digital investigation processes. In this submission, I introduce a proposed model for the digital investigation processes which is based on the scope of the Saudi Arabia investigation process, which has been integrated with existing models of digital investigation processes and has produced a new phase to deal with a situation where there is insufficient evidence. In this research, grounded theory has been adopted as a research method to investigate and explore the participant’s perspectives and their opinions regarding the adoption of a method of a digital forensics investigation process in the absence of complete evidence in the Saudi Arabian context. The interaction of investigators with digital forensics processes involves the social aspect of digital investigation which is why it was suitable to adopt a grounded theory approach. A semi-structured data collection approach has been adopted, to enable the participants to express their visions, concerns, opinions and feelings related to factors that impact the adoption of the DF model for use in cases where there is an absence of sufficient evidence in Saudi Arabia. The proposed model emerged after conducting a number of interviews and analysing the data of this research. The researcher developed the proposed model based on the answers of the participant which helped the researcher to find a solution for dealing with cases where there is insufficient evidence, through adding a unique step in the investigation process, the “TraceBack” Phase. This study is the first in Saudi Arabia to be developed to enhance the accuracy of digital forensics in the absence of sufficient evidence, which opens a new method of research. It is also the first time has been employed a grounded theory in a digital forensics study in the Saudi context, where it was used in a digital forensics study, which indicates the possibility of applying this methodology to this field.Saudi cultural bureau in Londo

    A FORENSICALLY-ENABLED IAAS CLOUD COMPUTING ARCHITECTURE

    Get PDF
    Cloud computing has been advancing at an intense pace. It has become one of the most important research topics in computer science and information systems. Cloud computing offers enterprise-scale platforms in a short time frame with little effort. Thus, it delivers significant economic benefits to both commercial and public entities. Despite this, the security and subsequent incident management requirements are major obstacles to adopting the cloud. Current cloud architectures do not support digital forensic investigators, nor comply with today’s digital forensics procedures – largely due to the fundamental dynamic nature of the cloud. When an incident has occurred, an organization-based investigation will seek to provide potential digital evidence while minimising the cost of the investigation. Data acquisition is the first and most important process within digital forensics – to ensure data integrity and admissibility. However, access to data and the control of resources in the cloud is still very much provider-dependent and complicated by the very nature of the multi-tenanted operating environment. Thus, investigators have no option but to rely on the Cloud Service Providers (CSPs) to acquire evidence for them. Due to the cost and time involved in acquiring the forensic image, some cloud providers will not provide evidence beyond 1TB despite a court order served on them. Assuming they would be willing or are required to by law, the evidence collected is still questionable as there is no way to verify the validity of evidence and whether evidence has already been lost. Therefore, dependence on the CSPs is considered one of the most significant challenges when investigators need to acquire evidence in a timely yet forensically sound manner from cloud systems. This thesis proposes a novel architecture to support a forensic acquisition and analysis of IaaS cloud-base systems. The approach, known as Cloud Forensic Acquisition and Analysis System (Cloud FAAS), is based on a cluster analysis of non-volatile memory that achieves forensically reliable images at the same level of integrity as the normal “gold standard” computer forensic acquisition procedures with the additional capability to reconstruct the image at any point in time. Cloud FAAS fundamentally, shifts access of the data back to the data owner rather than relying on a third party. In this manner, organisations are free to undertaken investigations at will requiring no intervention or cooperation from the cloud provider. The novel architecture is validated through a proof-of-concept prototype. A series of experiments are undertaken to illustrate and model how Cloud FAAS is capable of providing a richer and more complete set of admissible evidence than what current CSPs are able to provide. Using Cloud FAAS, investigators have the ability to obtain a forensic image of the system after, just prior to or hours before the incident. Therefore, this approach can not only create images that are forensically sound but also provide access to deleted and more importantly overwritten files – which current computer forensic practices are unable to achieve. This results in an increased level of visibility for the forensic investigator and removes any limitations that data carving and fragmentation may introduce. In addition, an analysis of the economic overhead of operating Cloud FAAS is performed. This shows the level of disk change that occurs is well with acceptable limits and is relatively small in comparison to the total volume of memory available. The results show Cloud FAAS has both a technical and economic basis for solving investigations involving cloud computing.Saudi Governmen
    corecore