19,698 research outputs found

    Energy Efficient Node Deployment in Wireless Ad-hoc Sensor Networks

    Full text link
    We study a wireless ad-hoc sensor network (WASN) where NN sensors gather data from the surrounding environment and transmit their sensed information to MM fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is formulated as an optimization problem to make a trade-off between the sensing uncertainty and energy consumption of the network. Our primary goal is to find an optimal deployment of sensors and FCs to minimize a Lagrange combination of the sensing uncertainty and energy consumption. To support arbitrary routing protocols in WASNs, the routing-dependent necessary conditions for the optimal deployment are explored. Based on these necessary conditions, we propose a routing-aware Lloyd algorithm to optimize node deployment. Simulation results show that, on average, the proposed algorithm outperforms the existing deployment algorithms.Comment: 7 pages, 6 figure

    An efficient scalable scheduling mac protocol for underwater sensor networks

    Get PDF
    Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes

    A Structured Hardware/Software Architecture for Embedded Sensor Nodes

    No full text
    Owing to the limited requirement for sensor processing in early networked sensor nodes, embedded software was generally built around the communication stack. Modern sensor nodes have evolved to contain significant on-board functionality in addition to communications, including sensor processing, energy management, actuation and locationing. The embedded software for this functionality, however, is often implemented in the application layer of the communications stack, resulting in an unstructured, top-heavy and complex stack. In this paper, we propose an embedded system architecture to formally specify multiple interfaces on a sensor node. This architecture differs from existing solutions by providing a sensor node with multiple stacks (each stack implements a separate node function), all linked by a shared application layer. This establishes a structured platform for the formal design, specification and implementation of modern sensor and wireless sensor nodes. We describe a practical prototype of an intelligent sensing, energy-aware, sensor node that has been developed using this architecture, implementing stacks for communications, sensing and energy management. The structure and operation of the intelligent sensing and energy management stacks are described in detail. The proposed architecture promotes structured and modular design, allowing for efficient code reuse and being suitable for future generations of sensor nodes featuring interchangeable components

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    • …
    corecore