166,704 research outputs found

    Formal Synthesis of Uncertainty Reduction Controllers

    Full text link
    In its quest for approaches to taming uncertainty in self-adaptive systems (SAS), the research community has largely focused on solutions that adapt the SAS architecture or behaviour in response to uncertainty. By comparison, solutions that reduce the uncertainty affecting SAS (other than through the blanket monitoring of their components and environment) remain underexplored. Our paper proposes a more nuanced, adaptive approach to SAS uncertainty reduction. To that end, we introduce a SAS architecture comprising an uncertainty reduction controller that drives the adaptive acquisition of new information within the SAS adaptation loop, and a tool-supported method that uses probabilistic model checking to synthesise such controllers. The controllers generated by our method deliver optimal trade-offs between SAS uncertainty reduction benefits and new information acquisition costs. We illustrate the use and evaluate the effectiveness of our approach for mobile robot navigation and server infrastructure management SAS

    Formal Synthesis of Uncertainty Reduction Controllers

    Get PDF
    In its quest for approaches to taming uncertainty in self-adaptive systems (SAS), the research community has largely focused on solutions that adapt the SAS architecture or behaviour in response to uncertainty. By comparison, solutions that reduce the uncertainty affecting SAS (other than through the blanket monitoring of their components and environment) remain underexplored. Our paper proposes a more nuanced, adaptive approach to SAS uncertainty reduction. To that end, we introduce a SAS architecture comprising an uncertainty reduction controller that drives the adaptive acquisition of new information within the SAS adaptation loop, and a tool-supported method that uses probabilistic model checking to synthesise such controllers. The controllers generated by our method deliver optimal trade-offs between SAS uncertainty reduction benefits and new information acquisition costs. We illustrate the use and evaluate the effectiveness of our approach for mobile robot navigation and server infrastructure management SAS

    Evaluation of Neuro-Evolution Algorithms for Tactic Volatility Aware Processes

    Get PDF
    Our society is increasingly evolving to rely on computer mechanisms that perform a variety of tasks. From a self-driving car to a satellite in space relaying data from Mars rovers, we need these systems to perform optimally and without failure. One such point of failure these systems can encounter is tactic volatility of an adaptation tactic. Adaptation tactics are defined workflows that allow systems to navigate their environment. Tactic volatility is the variance in the behavior in the attribute of a tactic, such as cost and latency and/or the combination of the two. Current systems consider these tactic attributes to be static. Studies have shown that not accounting for tactic volatility can adversely affect a system\u27s ability to operate effectively and resiliently. To support self-adaptive systems and address their limitations, this paper proposes a Tactic Volatility Aware solution that utilizes eRNN (TVA-E) and addresses the limitations of current self-adaptive systems. For this research, we used real-world data that has been made available for use by researchers and academics. This data contains real-world volatility and helps us demonstrate the positive impact TVA-E when used in self-adaptive systems. We also employ the use of uncertainty reduction tactics and how they can assist in accounting for tactic volatility. This work will serve as an evaluation and a comparison of using different machine learning methods to predict and account for tactic volatility. We will study different predictive mechanisms in this paper: Auto-Regressive Moving Average(ARIMA), Evolving Recurrent Neural Network(eRNN), Multi-Layer Perceptron(MLP), and Support Vector Regression(SVR). These methods will be studied with our TVA-E process and we will analyze how they can enhance a self-adaptive system’s performance when it accounts for tactic volatility

    Coordinating Local Adaptive Strategies through a Network-Based Approach

    Get PDF
    As the impacts of climate change become increasingly destructive and pervasive, climate adaptation has received greater political and academic attention. The traditional top-down model for mitigating climate change, however, is ill-suited to implementing effective adaptation strategies. Yet, local communities most impacted by climate change seldom have the tools and resources to develop effective adaptive strategies on their own. This note argues that a bottom-up, network-based approach could be a promising paradigm towards implementing effective adaptive strategies and empowering affected communities
    corecore