11,144 research outputs found

    Physics-constrained Random Forests for Turbulence Model Uncertainty Estimation

    Full text link
    To achieve virtual certification for industrial design, quantifying the uncertainties in simulation-driven processes is crucial. We discuss a physics-constrained approach to account for epistemic uncertainty of turbulence models. In order to eliminate user input, we incorporate a data-driven machine learning strategy. In addition to it, our study focuses on developing an a priori estimation of prediction confidence when accurate data is scarce.Comment: Workshop on Synergy of Scientific and Machine Learning Modeling, SynS & ML ICM

    Debiased Bayesian inference for average treatment effects

    Get PDF
    Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification ('posterior credible sets'). We investigate Bayesian inference for average treatment effects from observational data, which is a challenging problem due to the missing counterfactuals and selection bias. Working in the standard potential outcomes framework, we propose a data-driven modification to an arbitrary (nonparametric) prior based on the propensity score that corrects for the first-order posterior bias, thereby improving performance. We illustrate our method for Gaussian process (GP) priors using (semi-)synthetic data. Our experiments demonstrate significant improvement in both estimation accuracy and uncertainty quantification compared to the unmodified GP, rendering our approach highly competitive with the state-of-the-art.Comment: NeurIPS 201

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Evaluation of physics constrained data-driven methods for turbulence model uncertainty quantification

    Full text link
    In order to achieve a virtual certification process and robust designs for turbomachinery, the uncertainty bounds for Computational Fluid Dynamics have to be known. The formulation of turbulence closure models implies a major source of the overall uncertainty of Reynolds-averaged Navier-Stokes simulations. We discuss the common practice of applying a physics constrained eigenspace perturbation of the Reynolds stress tensor in order to account for the model form uncertainty of turbulence models. Since the basic methodology often leads to overly generous uncertainty estimates, we extend a recent approach of adding a machine learning strategy. The application of a data-driven method is motivated by striving for the detection of flow regions, which are prone to suffer from a lack of turbulence model prediction accuracy. In this way any user input related to choosing the degree of uncertainty is supposed to become obsolete. This work especially investigates an approach, which tries to determine an a priori estimation of prediction confidence, when there is no accurate data available to judge the prediction. The flow around the NACA 4412 airfoil at near-stall conditions demonstrates the successful application of the data-driven eigenspace perturbation framework. Furthermore, we especially highlight the objectives and limitations of the underlying methodology
    corecore