18,332 research outputs found

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    A New Compliance-function-shapeoriented Robust Approach for Volume-constrained Continuous Topology Optimization with Uncertain Loading Directions

    Get PDF
    The paper presents a new compliance-function-shape-oriented robust approach for the volume-constrained continuous topology optimization with uncertain loading directions. The pure set-based algorithm try to rearrange (take away) some amount of the material volume, originally used to minimize the nominal-compliance, to make a more balanced compliance-function-shape on the set of feasible directions which is less sensitive to the directional fluctuation. The objective is the area of the compliance function shape defined on the set of feasible directions. The area-minimal shape searching process is controlled by the maximum allowable increase of the nominal-compliance. The result will be a more robust compliance function shape which can be characterized by a higher nominal-compliance but a smaller curvature about it in any direction. Using the terminology of the classical variational problems, the proposed approach can be classified as a curve-length or surface-area minimizing inner-value problem where the inner condition, namely the maximum allowable increase of the nominal-compliance, expressed as a percentage of the original nominal compliance, the searching domain is defined implicitly as integration limits in the objective formulation and a usual equality relation is used to prescribe the allowable material volume expressed as a percentage of the total material volume. Two examples are presented to demonstrate the viability and efficiency of the proposed robust approach

    Risk-Averse Model Predictive Operation Control of Islanded Microgrids

    Full text link
    In this paper we present a risk-averse model predictive control (MPC) scheme for the operation of islanded microgrids with very high share of renewable energy sources. The proposed scheme mitigates the effect of errors in the determination of the probability distribution of renewable infeed and load. This allows to use less complex and less accurate forecasting methods and to formulate low-dimensional scenario-based optimisation problems which are suitable for control applications. Additionally, the designer may trade performance for safety by interpolating between the conventional stochastic and worst-case MPC formulations. The presented risk-averse MPC problem is formulated as a mixed-integer quadratically-constrained quadratic problem and its favourable characteristics are demonstrated in a case study. This includes a sensitivity analysis that illustrates the robustness to load and renewable power prediction errors

    An Inequality Approach to Approximate Solutions of Set Optimization Problems in Real Linear Spaces

    Get PDF
    This paper explores new notions of approximate minimality in set optimization using a set approach. We propose characterizations of several approximate minimal elements of families of sets in real linear spaces by means of general functionals, which can be unified in an inequality approach. As particular cases, we investigate the use of the prominent Tammer–Weidner nonlinear scalarizing functionals, without assuming any topology, in our context. We also derive numerical methods to obtain approximate minimal elements of families of finitely many sets by means of our obtained results

    Critical Investigation of the Combined Compliance Average and Spreading Measures in the Robust Topology Optimization with Uncertain Loading Magnitude and Direction

    Get PDF
    The paper critically investigates the role of the combined compliance average and spreading measures in the volume-constrained continuous robust topology optimization with uncertain loading magnitude and direction. In the robust topology optimization the generally expected and most popular robustness measure is the expected compliance, In the expectancy oriented approach, the compliance increment which is needed to get the robust design is an implicitly defined response variable. In order to open the possibility of the creative contribution of the designer to the best robust design searching process, this measure is sometimes combined with a spreading-oriented measure, which may be the variance or standard deviation. The best weighting schema can be done by a try-and-error-like algorithm in which the weights are design variables and the compliance-increment remains an implicitly defined response variable. In this paper, it will be shown that all of the compliance oriented approaches which are based on a single or combined statistical measure can be replaced by a new compliance-function-shape-oriented robust approach in which the allowed-compliance-increment will be an explicitly defined design variable and for a given increment value the robust solution will be the theoretically best one. A popular volume-constrained symmetric bridge problem with uncertain loading magnitude and direction will be presented to demonstrate the viability and efficiency of the proposed robust approach
    corecore