5,881 research outputs found

    Fractional Patlak-Keller-Segel equations for chemotactic superdiffusion

    Get PDF
    The long range movement of certain organisms in the presence of a chemoattractant can be governed by long distance runs, according to an approximate Levy distribution. This article clarifies the form of biologically relevant model equations: We derive Patlak-Keller-Segel-like equations involving nonlocal, fractional Laplacians from a microscopic model for cell movement. Starting from a power-law distribution of run times, we derive a kinetic equation in which the collision term takes into account the long range behaviour of the individuals. A fractional chemotactic equation is obtained in a biologically relevant regime. Apart from chemotaxis, our work has implications for biological diffusion in numerous processes.Comment: 20 pages, 4 figures, to appear in SIAM Journal on Applied Mathematic

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl
    • …
    corecore