131,086 research outputs found
Ultrathin Oxide Films by Atomic Layer Deposition on Graphene
In this paper, a method is presented to create and characterize mechanically
robust, free standing, ultrathin, oxide films with controlled, nanometer-scale
thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films
were deposited onto suspended graphene membranes using ALD. Subsequent etching
of the graphene left pure aluminum oxide films only a few atoms in thickness. A
pressurized blister test was used to determine that these ultrathin films have
a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much
thicker alumina ALD films. This behavior indicates that these ultrathin
two-dimensional films have excellent mechanical integrity. The films are also
impermeable to standard gases suggesting they are pinhole-free. These
continuous ultrathin films are expected to enable new applications in fields
such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted
Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films
A long standing problem of domain switching process - how domains nucleate -
is examined in ultrathin ferroelectric films. We demonstrate that the large
depolarization fields in ultrathin films could significantly lower the
nucleation energy barrier (U*) to a level comparable to thermal energy (kBT),
resulting in power-law like polarization decay behaviors. The "Landauer's
paradox": U* is thermally insurmountable is not a critical issue in the
polarization switching of ultrathin ferroelectric films. We empirically find a
universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure
Investigation of ultra-thin Al₂O₃ film as Cu diffusion barrier on low-k (k=2.5) dielectrics
Ultrathin Al(2)O(3) films were deposited by PEALD as Cu diffusion barrier on low-k (k=2.5) material. The thermal stability and electrical properties of the Cu/low k system with Al(2)O(3) layers with different thickness were studied after annealing. The AES, TEM and EDX results revealed that the ultrathin Al(2)O(3) films are thermally stable and have excellent Cu diffusion barrier performance. The electrical measurements of dielectric breakdown and TDDB tests further confirmed that the ultrathin Al(2)O(3) film is a potential Cu diffusion barrier in the Cu/low-k interconnects system
Insulating behavior in ultra-thin bismuth selenide field effect transistors
Ultrathin (~3 quintuple layer) field-effect transistors (FETs) of topological
insulator Bi2Se3 are prepared by mechanical exfoliation on 300nm SiO2/Si
susbtrates. Temperature- and gate-voltage dependent conductance measurements
show that ultrathin Bi2Se3 FETs are n-type, and have a clear OFF state at
negative gate voltage, with activated temperature-dependent conductance and
energy barriers up to 250 meV
Exploratory development and services for preparing and examining ultrathin polished sections of lunar rocks and particulates, part 1
Development of improved procedures is reported for three classes of lunar materials: dense rocks, breccias, and particulates. High quality ultrathin sections of these materials are obtained. Lists of equipment and supplies, procedures, photomicrographic documentation, and training are provided. Advantages of ultrathin polished sections for conventional and unconventional optical microscopy methods are described. Recommendations are provided for use of ultrathin sections in lunar rock studies, for further refinement of ultrathinning procedures, and for additional training efforts to establish a capability at the Manned Space Center. For Part 2, See N72-50754
Highlights of the Science and Life of Peter Varga (1946—2018)
Peter Varga has passed on October 27, 2018. His pioneering discoveries of chemical resolution at the atomic scale on surface alloys, atomic resolution of ultrathin alkali halides, nucleation of bcc iron in ultrathin films, and the microscopic structure of ultrathin alumina films stimulated worldwide research. In recognition of his outstanding scientific contributions, in December 2017 the Japanese Society for the Promotion of Science (JSPS) awarded him a prize for his distinguished contribution on the clarification of surface phenomena by atomic level investigations and the development of novel functional materials. This contribution highlights the life of Peter Varga as a scientist and as a person. With his elegance, his energy, his wit, and his generosity he was a close friend and role model to many of us, and showed us how to combine scientific curiosity and creativity with the lightness of being
Domain evolution of BaTiO3 ultrathin films under electric field: a first-principles study
A first-principles-derived method is used to study the morphology and
electric-field-induced evolution of stripe nanodomains in (001) BaTiO3 (BTO)
ultrathin films, and to compare them with those in (001) Pb(Zr,Ti)O3 (PZT)
ultrathin films. The BaTiO3 systems exhibit 180o periodic stripe domains at
null electric field, as in PZT ultrathin films. However, the stripes alternate
along [1-10] in BTO systems versus [010] in PZT systems, and no in-plane
surface dipoles occur in BTO ultrathin films (unlike in PZT materials).
Moreover, the evolution of the 180o stripe domains in the BaTiO3 systems, when
applying and increasing an electric field along [001], involves four regions:
Region I for which the magnitude of the down dipoles (i.e., those that are
antiparallel to the electric field) is reduced, while the domain walls do not
move; Region II in which some local down dipoles adjacent to domain walls
switch their direction, resulting in zigzagged domain walls - with the overall
stripe periodicity being unchanged; Region III in which nanobubbles are
created, then contract along [110] and finally collapse; and Region IV which is
associated with a single monodomain. Such evolution differs from that of PZT
ultrathin films for which neither Region I nor zigzagged domain walls exist,
and for which the bubbles contract along [100]. Discussion about such
differences is provided.Comment: 19 pages, 4 figures, 27 references, submitted to Phys. Rev.
Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc
Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are
epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor
deposition method. The films are phase-pure, oxidation-free and continuous. The
7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0)
reported in MgB2 with the same thickness. The critical current density of
ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~
10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the
excellent superconducting properties of ultrathin MgB2 films with thicknesses
between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table
Coherent control of Snell's law
We demonstrate coherent control of the generalized Snell's law in ultrathin gradient metasurfaces constructed by an array of V-shaped slot nanoantennas
- …
