87,610 research outputs found
Particle-by-Particle Reconstruction of Ultrafiltration Cakes in 3D from Binarized TEM Images
Transmission electron microscopy (TEM) imaging is one of the few techniques available for direct observation of the microstructure of ultrafiltration cakes. TEM images yield local microstructural information in the form of two-dimensional grayscale images of slices a few particle diameters in thickness. This work presents an innovative particle-by-particle reconstruction scheme for simulating ultrafiltration cake microstructure in three dimensions from TEM images. The scheme uses binarized TEM images, thereby permitting use of lesser-quality images. It is able to account for short- and long-range order within ultrafiltration cake structure by matching the morphology of simulated and measured microstructures at a number of resolutions and scales identifiable within the observed microstructure. In the end, simulated microstructures are intended for improving our understanding of the relationships between cake morphology, ultrafiltration performance, and operating conditions
The Study of the Method of Fight Against Formation of Polarizing Layer at the Process of Ultrafiltration Concentration of the Skim Milk
The description of experimental set and the method of processing of the results of the study of the method of fight against formation of polarizing layer in the process of ultrafiltration concentration of skim milk raw material were presented. The results of experimental studies relative to the sparging method application for the prevention of polarizing layer in the process of membrane processing of the skim milk and its influence on the capacity of ultrafiltration membranes were offered. The mathematical models were constructed on the base of regressive equations of factorial experiment using the method of the raw material sparging above the membrane surface for selection of technological parameters of the process of ultrafiltration concentration of the skim milk. The rational working parameters of the process of ultrafiltration concentration of the skim milk using the sparging of the skim milk by the gas bubbles in the direct closeness to the membrane surface were determined. Such working parameters are: pressure– 0,4...0,5 MPa, temperature of skim milk– 40...50 ºС, frequency of sparging of skim milk– 0,10...0,15 min-1, pressure of sparging must be 0,56...0,58 MPa
The formation of nodular structures in the top layer of ultrafiltration membranes
The formation of nodular structures in the top layer of ultrafiltration membranes is considered. A critical review of mechanisms described in the literature is given. Flat-sheet poly(ether sulfone) membranes and hollow-fiber poly(ether sulfone)/polyvinylpyrrolidone membranes were made by coagulation of a polymer solution in a nonsolvent medium under different circumstances. From these experiments, a number of empirical rules are found to describe the resulting morphology of the top layer. A new mechanism for the formation of a nodular structure is proposed. It is based on the small diffusion coefficient of the polymer molecules compared to the diffusion coefficient of solvent and nonsolvent combined with a high degree of entanglement of the polymer network. For unstable compositions, phase separation will proceed by growth in amplitude of concentration fluctuations. The rapid diffusional exchange of solvent for nonsolvent in the top layer leads to vitrification of the maxima of the concentration fluctuations that form the nodules. Complete disentanglement of the polymer chains between the nodules is not reached, which explains the small pores and the low porosity of ultrafiltration membranes
Single and binary protein electroultrafiltration using poly(vinyl-alcohol)-carbon nanotube (PVA-CNT) composite membranes.
Electrically conductive composite ultrafiltration membranes composed of carbon nanotubes have exhibited efficient fouling inhibition in wastewater treatment applications. In the current study, poly(vinyl-alcohol)-carbon nanotube membranes were applied to fed batch crossflow electroultrafiltration of dilute (0.1 g/L of each species) single and binary protein solutions of α-lactalbumin and hen egg-white lysozyme at pH 7.4, 4 mM ionic strength, and 1 psi. Electroultrafiltration using the poly(vinyl-alcohol)-carbon nanotube composite membranes yielded temporary enhancements in sieving for single protein filtration and in selectivity for binary protein separation compared to ultrafiltration using the unmodified PS-35 membranes. Assessment of membrane fouling based on permeate flux, zeta potential measurements, and scanning electron microscopy visualization of the conditioned membranes indicated significant resulting protein adsorption and aggregation which limited the duration of improvement during electroultrafiltration with an applied cathodic potential of -4.6 V (vs. Ag/AgCl). These results imply that appropriate optimization of electroultrafiltration using carbon nanotube-deposited polymeric membranes may provide substantial short-term improvements in binary protein separations
Potable water production by membrane processes: membrane characterization using a series of bacterial strains
The aim of this study was to develop a method for characterizing membranes (ultrafiltration and microfiltration) used in drinking water production. The method accounts for the specific behaviour of microorganisms during filtration, namely their deformation under mechanical stress. The leaks of microorganisms are linked to the presence of a small number of defects or abnormally large pores in the membrane structure. Assuming that the defects are cylindrical capillaries, the range of pore diameters concerned by the method lies between 0.05 and 1.2mm
Model selection and model averaging on mortality of upper gastrointestinal bleed patients
Model Selection (MS) is known to produce uncertainty into model-building process. Besides that, the process of MS is complex and time consuming. Therefore, Model Averaging (MA) had been proposed as an alternative to overcome the issues. This research will provide guidelines of obtaining best model by using two modelling approach which are Model Selection (MS) and Model Averaging (MA) and compares the performance of both methods. Corrected Akaike Information Criteria (AICc) and Bayesian Information Criteria (BIC) were applied in the model-building using MS to help determine the best model. In MA process, model selection criteria are needed to compute the weights of each possible models. Two model selection criteria (AICcand BIC) were compared to observe which will produce model with a better performance. For guidelines illustration, data of Upper Gastrointestinal Bleed (UGIB) were explored to identify influential factors which leads to the mortality of patients. At the end of the study, best model using MA shown to have a better performance andAICc is proven to be a better model selection criterion approach in MA. In conclusion, the most significant factors for mortality of UGIB patients were identified to be shock score, comorbidity and rebleed
Ultrafiltration of protein solutions; the role of protein association in rejection and osmotic pressure
The monomer-dimer equilibrium of the protein β-lactoglobulin under neutral conditions appears to influence the rejection and the osmotic pressure build-up, both phenomena closely related to ultrafiltration. Rejection measurements indicate different rejections for the β-lactoglobulin monomers and dimers: the membrane rejects the dimer almost completely and the monomer only partially. The osmotic pressure turns out to be highly dependent on the protein concentration. A good agreement, up to high concentrations, is found between experimental data and theoretical osmotic pressures, calculated by taking into account the state of association, the excluded volume and the Donnan effects. The effect of changes in pH on the osmotic pressure has been measured: a minimum was found around pH = 4.5, where according to the literature, maximum protein-protein interaction occurs
The preparation and characterization of alumina membranes with ultra-fine pores : Part 4. Ultrafiltration and hyperfiltration experiments
The rejection characteristics of three types of alumina membranes for polyethylene glycol (PEG) polymers and dextrans soluted in water have been investigated. If the temperature at which the membranes are treated is increased, the pore size increases and as a result the cut-off value also increases. The Al2O3-400 membrane (i.e., the membrane treated at 400°C) exhibits a cut-off value of 2,000 for PEG while that of an Al2O3-800 membrane is about 20,000. Both Al2O3-500 and Al2O3-800 membranes show rejections higher than 80% for the dextrans investigated. The rejection behaviour is compared with literature data on Nuclepore membranes. The performance of the alumina membranes is compared with that of other inorganic membranes. Low molecular weight solutes show only small rejection values solar, although high values are reported in the literature for Vycor glass membranes with pores of similar size
Reversibility of fouling on ultrafiltration membrane by backwashing and chemical cleaning: differences in organic fractions behaviour
Membrane fouling is an inherent phenomenon in ultrafiltration (UF) membrane processes, making it necessary to periodically perform backwashes (BW) and chemical cleanings in place (CIP) to restore the initial permeability of the membrane. The objective of this study was (1) to explore systematically the effect of distinct BW-related variables (BW transmembrane pressure, duration, frequency and composition) on the reversibility of UF membrane fouling and on the permeate quality (in terms of total organic carbon, turbidity and UV absorbance) over successive filtration/BW cycles; and (2) to identify which organic fractions were most removed by the membrane and, of these, which were most detached after BW, alkaline and oxidant CIP and acid CIP episodes. For this purpose, a bench-scale outside-in hollow fibre module operated under dead-end filtration mode at constant transmembrane pressure and treating settled water from a drinking water treatment plant was employed. Dissolved organic carbon fractionation was performed by high-performance size-exclusion chromatography. Results showed that, in general, the more intensive the BW was (in terms of high transmembrane pressure, shortened frequency and prolonged duration) the more effective it was in removing fouling from the membrane. Concerning the composition of the water used for the BW, the addition of NaClO led to maximum fouling reversibility, closely followed by the combination of NaOH+NaClO, while citric acid and NaOH contributed little compared to water alone. However, results also showed that irreversible fouling was never completely avoided whatever the BW regime applied, leading to a gradual increase in the total resistance over time. Larger differences in the behaviour of the different organic fractions were observed. UF membrane preferentially retained the heaviest fraction of biopolymers (BP), while the intermediate fraction of humic substances (HS) was removed at a lower percentage and the lighter fractions seemed to entirely pass through the UF membrane. The successive application of BW and CIPs resulted in the detachment from the membrane of a significant percentage of the retained BP, whereas only a modest percentage of the retained HS.Peer ReviewedPostprint (author's final draft
Preparation and properties of a composite charged membrane
In order to develop a low pressure desalination membrane with fixed ionic charges, we made use of the normally unwanted crosslinking tendency in preparing the polyelectrolyte poly(styrenesulfonate) by sulfonation of polystyrene. After dipcoating a poly(sulfone) or poly(phenylene oxide) UF membrane with a dilute soluton of this polyelectrolyte in water in the presence of some free sulfuric acid and silversulfate, fixation and cross-linking of the coating polymer took place by a heat treatment.\ud
\ud
Different membrane properties could be obtained by varying the pore size of the supporting UF membranes, and by variation in the coating polymer (M.W., concentration) and sulfuric acid concentration. We found that fluxes sometimes decline drastically in comparison with the original pure water flux; salt rejection values (at 1.5 g/l NaCl concentration and 0.5 MPa) never are very high (≤60% for monovalent anions). The most important potential application for these membranes lies in their non-fouling properties
- …
