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ABSTRACT 

 

Membrane fouling is an inherent phenomenon in UF membrane processes, making it necessary 

to periodically perform backwashes (BW) and chemical “cleanings in place” (CIP) to restore the 

initial permeability of the membrane. The objective of this study was 1) to explore 

systematically the effect of distinct BW-related variables (BW transmembrane pressure, 

duration, frequency, composition) on the reversibility of UF membrane fouling and on the 

permeate quality (in terms of total organic carbon, turbidity and UV absorbance) over 

successive filtration/BW cycles; and 2) to identify which organic fractions were most removed 

by the membrane and, of these, which were most detached after BW, alkaline and oxidant CIP 

and acid CIP episodes. For this purpose, a bench-scale outside-in hollow fibre module operated 

under dead-end filtration mode at constant transmembrane pressure and treating settled water 

from a drinking water treatment plant was employed. Dissolved organic carbon fractionation 

was performed by high performance size exclusion chromatography (HPSEC). Results showed 

that in general the more intensive a BW was (in terms of high transmembrane pressure, 

shortened frequency and prolonged duration) the more effective it was in removing fouling from 

the membrane. Concerning the composition of the water used for the BW, the addition of 

NaClO led to maximum fouling reversibility, closely followed by the combination of 

NaOH+NaClO, while citric acid and NaOH contributed little compared to water alone. 

However, results also showed that irreversible fouling was never completely avoided whatever 

the BW regime applied, leading to a gradual increase of the total resistance over time. Larger 
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differences in the behaviour of the different organic fractions were observed. UF membrane 

preferentially retained the heaviest fraction of biopolymers (BP), while the intermediate fraction 

of humic substances (HS) was removed at a lower percentage and the lighter fractions seemed 

to entirely pass through the UF membrane. The successive application of BW and CIPs resulted 

in the detachment from the membrane of a significant percentage of the retained BP, whereas 

only a modest percentage of the retained HS. 

 

Keywords: backwashing; fouling reversibility; organic fractions; surface water treatment; 

ultrafiltration 

 

 

1. INTRODUCTION 

 

Application of pressure-driven membrane processes as microfiltration (MF) and 

ultrafiltration (UF) has expanded in recent years as an alternative technology for wastewater 

treatment and drinking water production. This expansion is due to the fact that UF has proved to 

be an effective physical barrier to particles, colloids, bacteria and certain viruses that are larger 

than the UF membrane pores and, hence, are retained by size-exclusion mechanisms, among 

others. Furthermore, UF provides extra advantages over conventional treatments such as small 

footprint, low energy consumption, limited chemical dosing, capability of coping with wide 

fluctuations in feed quality and delivering permeate of relatively constant quality, and reduced 

scale-up risks [1-5]. 

The retained particles accumulated on the feed side of the membrane (and within the 

membrane pores), however, give rise to the major drawback of UF systems: fouling formation. 

Fouling leads to additional hydraulic resistance to permeate flow, increase of the energy 

consumption of the process, lowering of the productivity, worsening of the product quality and 

eventually premature replacement of membranes [2,4,6-8]. 

In order to remove fouling, UF membranes are periodically subjected to physical 

cleaning such as backwashing (BW). BW is performed by reversing the direction of flow 

through the membrane to dislodge and remove foulants from it and restore the initial 

permeability [6,8-10]. Fouling removed by a hydraulic cleaning such as BW is referred to as 

“physically reversible fouling”, in opposition to the “irreversible fouling” made of substances 

strongly adhered on or within the membrane and not flushed out by any physical cleaning 

procedure. It is this irreversible fouling that leads to a long-term increase of the resistance (with 

the subsequent increase of the operational costs) and to a progressive deterioration of the 

membrane.  

Page 2 of 26

URL: http://mc.manuscriptcentral.com/tdwt

Desalination and Water Treatment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

3 

 

The operation of a UF membrane consists, then, of a succession of cycles each 

comprising a filtration step (in which membrane resistance gradually increases due to fouling) 

and a BW step (in which membrane resistance is lowered as foulants are removed from the 

membrane). Figure 1 schematically represents the evolution of the total membrane resistance 

during its operation, showing all its components, i.e. resistance of clean membrane (Rm), 

resistance due to the reversible fouling (Rrev) and resistance due to the irreversible fouling 

(Rirrev). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Qualitative representation of the evolution of membrane resistance over a succession 

of filtration and backwashing (BW) cycles. 

 

 The removal of the irreversible fouling can be partially achieved only through 

aggressive chemical cleaning (“cleaning in place” (CIP)), which is usually burdensome and 

requires the shutdown of the unit being cleaned for several hours. Chemical cleaning causes 

both a reduction of the overall production plant capacity and a deterioration of the membranes, 

wherefore it should be minimised wherever possible [3,11]. A strategy that helps minimise 

chemical cleaning is the addition of chemical cleaners into the water used for BW, giving rise to 

the so-called “chemically-enhanced backwash” (CEB) [12]. This cleaning operation does not 

require an extended shutdown, since it is conducted on line, and the chemicals’ concentration 

and/or their nature tend to be less aggressive compared to the CIP ones. As a consequence, 

typically CEBs are less effective than CIPs.  

The extent and reversibility of membrane fouling is largely dependent on multiple 

variables such as membrane characteristics, feed water properties, filtration conditions, module 

configuration, BW regime… making the control of membrane fouling a complex phenomenon. 

Among these, the effect of feed water composition and membrane operating conditions have 

been most researched [8,13-15], while less studies have dealt with the effect that BW variables 
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(duration, frequency…) or different organic components of the dissolved organic matter (DOM) 

exhert on UF membrane fouling.  

Comparison of results from studies on BW variables is, moreover, not entirely reliable 

and needs to be treated with caution for several reasons. First, these studies treat different types 

of water: wastewater [2,5,6,11,12,16], seawater [1,17,18] and surface water [3,10], each with 

different fouling behaviour potential under a given BW regime. For instance, it has been 

reported that a high salt concentration in the seawater might influence the interaction forces 

between membrane and foulants [1]. Second, the configuration of UF modules in these st8]udies 

is very variable: flat-sheet [10], spiral wound [17], pressurized (inside-out) [5,6,12,18] and 

submerged (outside-in) [1,10] hollow fibre membrane systems, also affecting the propensity to 

fouling [1,16,19]. Furthermore, most of them are focused on the evolution of the membrane 

resistance and fouling rates [2,3,5,6,16] and only a few quantify the reversible and irreversible 

fouling after each backwash cycle [1]. Within this context, more research is still needed on 

quantitatively determining the effect of BW-related variables on the reversibility of fouling on 

UF membranes for all scenarios and, in particular, for the outside-in hollow fibre UF for surface 

water.  

Fouling by DOM components or fractions is also gaining increasing attention of 

researchers. Indeed, it is acknowledged that different constituents of DOM do not necessarily 

foul UF membranes on the same way or degree [20-22]. Characterizing such DOM fractions is 

thus essential for a better understanding of which constituents contribute most in the fouling of a 

UF membrane. Among the methods developed to characterize DOM, high performance size 

exclusion chromatography (HPSEC) (whereby DOC fractions are separated according to their 

hydrodynamic size) has gained much attention as a powerful method for quantitative and 

qualitative characterization of DOC [23]. 

The objective of this study was 1) to explore systematically the effect of distinct BW-

related variables on the reversibility of UF membrane fouling and on the permeate quality over 

successive filtration/BW cycles in the treatment of surface water; and 2) to identify which 

organic fractions were best removed after backwashing (BW) and cleaning-in-place (CIP) 

episodes. For this purpose, a bench-scale outside-in hollow fibre module operated under dead-

end filtration mode at constant transmembrane pressure (TMP) was employed. The variables of 

study comprised BW TMP, duration and frequency as well as composition of CEBs. Permeate 

quality was monitored in terms of total organic carbon (TOC), turbidity and UV absorbance 

(UV254). For the second objective, DOC fractionation was performed by HPSEC. 
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2. METHODS 

 

2.1. Feed water characteristics 

 

The feed water to be filtered by the UF module was decanted water from the settling 

basin of the drinking water treatment plant in Sant Joan Despí (Barcelona, Spain). The average 

composition of this water during the course of the study is given in Table 1.  

 

Table 1: Average feed water quality 

 

Parameter Concentration 

pH 7.6 

Conductivity (µS/cm) 1490 

Turbidity (NTU) 1.76 

Abs254 (abs/m) 0.080 

TOC (mg/L) 4.1 

Al (µg/L) 364 

Fe (µg/L) 23 

P (µg/L) 43 

 

 

2.2. UF device and membrane characteristics 

 

All experiments conducted in this study were carried out employing a bench-scale 

outside-in hollow fibre module (Polymem UF0808M3) operated under dead-end filtration mode 

at constant TMP. The main characteristics of the UF module provided by the manufacturer are 

shown in Table 2. 
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Table 2: Characteristics of the UF membrane module provided by the manufacturer. 

 

Manufacturer Polymem 

Membrane type UF0808M3 

Filtration mode Out-in 

Membrane material  Polysulfone 

Potting material  Polyurethane 

Vessel material U-PVC 

Fibre diameter (mm) 1.4 

Surface area (m²) 0.01 

Module external diameter (mm) 20 

Module length (mm) 200 

Nominal MWCO (Da) 300000 

Nominal Pore size (µm) 0.08 

Maximum feeding pressure (bar) 3.0 

Maximum TMP (bar) 1.5 

Maximum TMP during backwash (bar) 2.0 

Maximum temperature (ºC) 35 

pH range 2-12 

 

 

The decanted feed water was directed to the UF module by means of a centrifugal pump 

(IML S.A.U., Model MS100M). Valves in the system were opened and closed such that the 

direction of flow was out-in during the filtration step and reversed to in-out during the BW step. 

During filtration the feed solution passed through the UF membrane and permeate was collected 

for flux measurements and chemical analysis. TMP was measured by a pressure gauge (Keller 

Group, model Leo 3). During BW, UF permeate was pumped using a peristaltic pump 

(Heidolph, model Pump drive PD5001) and the backwash stream discharged into a separate 

tank. A schematic diagram of the experimental set-up is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic diagram of the experimental UF system setup. 
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2.3. Filtration procedure 

 

Prior to each fouling experiment, the cleaned membrane resistance (Rm) was measured 

through a filtration test with deionised water. These tests were conducted in dead-end mode at a 

TMP of 1.2 bar without recirculation of permeate for 15 min and then with recirculation until 

constant permeate production. At this point, Rm was calculated according to the well-established 

Darcy’s equation described in Section 2.6. 

Each filtration experiment was carried out at a filtration TMP of 1.2 bar and one 

combination of BW-related variables, i.e.: backwash TMP (BWTMP), backwash duration (BWd), 

backwash frequency (BWf) and chemically enhanced backwash composition (BWCEB-c). For the 

carrying out of the experiments with CEBs the dose of NaClO was 7 mg/L, while NaOH and 

citric acid were added to bring pH to 10-11 and to 3-4, respectively. In order to isolate the effect 

of these variables on fouling reversibility, each of them was varied (as shown in Table 3) while 

setting all other variables at fixed values (marked in bold in Table 3). 

 

Table 3: Summary of the experimental conditions and variation of each set of experiments 

conducted during the study. 

 

Variable of study Tested values 

BWTMP (bar) 0.7, 1.0, 1.5, 1.8 

BWf (min) 10, 20, 40, 60 

BWd (min) 0.5, 1.0, 2.0 

BWCEB-c Blank
*, NaClO, NaOH, NaOH+NaClO, citric acid  

* Blank means BW with UF permeate 

The pre-fixed value is marked in bold 

 

Permeate flux and quality was monitored all over each filtration experiment, which 

lasted 200 min and was generally conducted in duplicate to ensure consistency of results. Flux 

was measured by the timed collection of permeate in a volumetric flask. Because feed water for 

all experiments was taken from the same location in the treatment train of the DWTP in Sant 

Joan Despí, the differences observed in fouling reversibility could be attributed to the 

investigated BW-related variables. 
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2.4. Removal and reversibility of organic fractions 

 

Further efforts were devoted to investigate which organic fractions were most removed 

by the UF membrane and which were most detached from it after the successive application of 

BW (assisted with intermittent CEB), a CIP based on alkaline and oxidant agents (CIP-B) and 

finally a CIP based on an acid agent (CIP-A). This allowed quantify the reversible fouling after 

each backwashing and cleaning step and eventually the irreversible fouling on the UF 

membrane.  

For this purpose, a filtration experiment was conducted similarly to those described 

above at a constant TMP of 1.2 bar and a BW regime optimised from the previous set of 

experiments, i.e. BW was performed every 20 min of filtration at a TMP of 1.8 bar and with a 

duration of 1.0 min. Additional CEBs based on a combination of NaClO (7 mg/L) and NaOH 

(pH 10-11) were applied every 3 BW. A total volume of 3.945 L of feed water was filtered, of 

which 0.337 L was used for BW. On completion of the filtration experiment, the UF membrane 

was consecutively subjected first to the CIP-B with the addition of NaOH (pH between 11 and 

12) in combination with 200 mg/L NaClO (volume 50 mL, contact time 90 min) and, second, to 

the CIP-A with the addition of citric acid (pH between 3 and 4, volume 50 mL, contact time 30 

min). The reagents used for CIP-B and CIP-A were selected in accordance with the ones used in 

the drinking water treatment plant of Sant Joan Despí. 

Feed and permeate over the experiment were collected for analysis of DOC and its 

fractions (see below analytical techniques) by HPSEC. Organic fractionation was also 

performed for the successive BW streams (collected as a composite sample) and CIP-B and 

CIP-A solutions. 

 

2.5. Chemical analysis of water samples 

 

Feed water and UF permeate quality for the first set of experiments was analysed in 

terms of turbidity, TOC and UV254. The samples were collected in sterile vials and stored in 

cold conditions until analysis in the laboratory. Turbidity was analysed by nephelometry (Hach 

2100 AN IS Turbidimeter), Absorbance was analysed by spectrophotometry (Hach DR 5000) 

and TOC by oxidative combustion and infrared-detection (Shimadzu V CPH).  

Fractionation of dissolved organic carbon (DOC) was performed by HPSEC using a 

Toyopearl TSK HW-50S column (250x20 mm) coupled to on-line UV254, organic carbon (OC) 

and organic nitrogen (ON) detectors by DOC-Labor (Karlsruhe). The principles of the technique 

are reported in depth by Huber et al. [23]. Briefly, it is based on size exclusion liquid 

chromatography whereby organic compounds are fractionated into five sub-fractions according 

to their molecular weight (MW): (1) biopolymers (BP, with MW>20000 g/mol, basically 
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constituted by polysaccharides and proteins), (2) humic  substances (HS, with MW of approx. 

1000 g/mol, constituted by fulvic and humic acids), (3) building blocks (BB, with MW between 

300 and 500 g/mol, constituted by breakdown products of humics), (4) low molecular weight 

acids (LMWA, with MW<350 g/mol, constituted by alcohols, aldehydes, ketones, sugars and 

amino acids) and (5) low molecular neutrals (LMWN, with MW<350 g/mol, constituted by 

alcohols, aldehydes, ketones and amino acids). The organic carbon retained in the 

chromatographic column (i.e. non-chromatographic DOC) is termed hydrophobic fraction. 

Based on the differences in UV-active components or nitrogen content, HPSEC can also 

determine the content of proteins within the BP fraction. 

 

2.6. Data treatment for the membrane hydraulic performance evaluation 

 

Fouling was determined by the increase of resistance posed by the fouled membrane, 

which was in turn calculated from the decline of permeate flux according to the well-established 

Darcy’s equation: 

 

J = 	
∆P

μ · R	
	��

																																																														(eq. 1) 

 

where J is the permeate flux (m3·m–2·s–1), ∆P is the TMP (Pa), µ is the permeate viscosity (Pa·s) 

(corrected to 20ºC ) and Rtotal is the total resistance of the fouled membrane (m–1). According to 

Darcy’s law, a decrease in J under constant ∆P during membrane filtration process (or 

equivalently an increase in ∆P under constant J) is indicative of membrane fouling. The total 

resistance can be described by the resistance-in-series model and expressed as [4,10,13]: 

 

J = 	
∆P

μ · (R� + R��� + R�����)
																										(eq. 2) 

where Rm is the cleaned membrane resistance (measured before each experiment with deionised 

water) and Rrev and Rirrev are the hydraulically reversible and irreversible fouling resistances, 

respectively. 

For each filtration cycle “i” R���
�  was calculated as the difference of resistance 

measured before and after backwashing (as shown in Figure 2). 

R���
� = 	R���
��	��

� − R��	��	��
�  

The contribution of R���
� 	over the total fouling of the membrane (Rfouling) can then be 

calculated as follows (see Figure 1): 
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Reversible	fouling	(%) =
+,-.

/

+0123/45
/ =

+6-01,-	78
/ 	9	+:0;-,	78

/

+6-01,-	78
/ 9	+<

										(eq. 3)  

In this study, averaged reversible fouling percentages over all filtration cycles and 

duplicates under the same experimental conditions are reported for comparison between 

different BW regimes. 

It must be remarked here that most published studies report experimental data on a 

dimensionless basis (e.g normalised flux, pressure, permeability or resistance). While this 

facilitates indeed comparison of experiments carried out under different experimental 

conditions, it also masks the possible effects of e.g. flux and pressure values on fouling. For this 

reason, measured fouling-related variables were not normalised and reported as measured. 

 

 

3. RESULTS 

Plotted in the next figures are a) the total resistance curves obtained for each set of BW 

conditions, b) the degree of membrane fouling reversibility calculated from the resistance 

profile and according to eq. 2, and c) the quality of permeate in terms of turbidity, UV254 and 

TOC. In all cases, resistance profile showed a pattern as described in Figure 1, i.e. an increase in 

resistance during the filtration step and a decrease during BW. The resistance was however not 

completely restored to the initial value, indicating that, regardless the BW regime, irreversible 

foulants slowly accumulated onto and into the membrane. 

  

3.1. Effect of backwashing transmembrane pressure (BWTMP) 

 

As shown in Figure 3, higher BWTMP provided a lower resistance increase (i.e. a better 

permeability restoration) over the experiment (Figure 3a) and a higher degree of fouling 

reversibility (Figure 3b). Rrev percentage was below 30% at BWTMP of 0.7 and 1.0 bar, but it 

increased to 31% at BWTMP of 1.5 bar and up to 41% at BWTMP of 1.8 bar. This trend is likely 

due to the fact that shearing stress can more efficiently wash out tightly bound foulants from the 

membrane that would not be removed by lower BWTMP. 

This finding is partially in accordance with that reported by Remize et al. [10], who 

observed that increasing BWTMP from 1.2-2.0 bar in the filtration of surface water with UF 

membranes resulted in an increase of the foulants removed from the membrane (from 25% to 

44%). Interestingly, and in opposition to our study, this trend did not translate into an increase 

of permeability recovery with BWTMP, highlighting that measurement of permeability (or 
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resistance) recovery may not be sufficient to identify fouling removal and that measurement of 

matter removed may be also necessary.  

With regards to the permeate quality, removal of turbidity, UV254 and TOC were 

comparable within the experimental error whatever the BWTMP applied (Figure 3c). Turbidity 

and UV254 were decreased at high degrees (average removals of 88% and 96%, respectively), 

while TOC was only decreased by <10% for all BWTMP values. The low retention of TOC by 

the UF membrane may be explained by the predominance of small molecular weight (MW) 

organic fractions with MW≤1000 Da (much smaller than the nominal MWCO of the UF 

membrane of 300000 Da, see Table 2) present in the decanted water [24]. 
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Figure 3: Effect of backwash transmembrane pressure (BWTMP) on the a) total resistance of the 

fouled membrane, b) percentage of reversible fouling over the total membrane fouling and c) 

removal of turbidity, UV254 and TOC by the UF membrane (confidence intervals ≤4.5% at a 

confidence level of 95% for all cases). 

 

3.2. Effect of BW frequency (BWf) 

 

The effect of BWf on the total resistance, fouling reversibility and permeate quality 

during the process of membrane filtration is shown in Figure 4. It is noticeable in Figure 4a that 

the initial resistance for BWf=10 min was slightly higher than that corresponding for all other 

BWf, suggesting that permeability membrane before that experiment had not been completely 

restored. Even so, backwashing every 10 min resulted in a lower fouling rate, in contrast to 

backwashing at stretched frequencies (20, 40 and 60 min), which led to a more severe increase 

in fouling resistance (i.e. accumulation of irreversible fouling) during membrane operation. As 

shown in Figure 4b, the more frequent the BW the higher the reversibility of fouling: fouling 

reversibility decreased from 50% for BWf of 10 min to 41% for BWf of 20 min and below 37% 

for both BWf of 40 and 60 min. 

Similar trends on lowered fouling accumulation with more frequent BW have been 

reported by other researchers, although the degree of dependence differ considerably if other 

types of feed water or UF configurations are used as it is commonly the case [2,5,12]. There is, 

however, consensus that stretched BW frequencies allow more material to be accumulated on 

the membrane surface during a filtration cycle, forming a fouling layer more tightly attached 

and compacted and exhibiting thus a lower degree of reversibility under a given BW [1,6,16]. 

Concerning the permeate quality, no significant differences were observed neither under 

the different BWf tested nor compared with the previous set of experiments under different 

BWTMP. Turbidity and UV254 removals were 88% and 95%, respectively, whereas TOC removal 

was only 5%. 
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Figure 4: Effect of backwash frequency (BWf) on the a) total resistance of the fouled membrane, 

b) percentage of reversible fouling over the total membrane fouling and c) removal of turbidity, 

absorbance and TOC by the UF membrane (confidence intervals ≤7.6% at a confidence level of 

95% for all cases). 
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3.3. Effect of BW duration (BWd) 

 

The effect of BWd on the total resistance, fouling reversibility and permeate quality 

during the process of membrane filtration is shown in Figure 5. As in the previous set of 

experiments, an experiment showed an initial membrane resistance slightly higher than the 

corresponding to the other experiments, suggesting again that the membrane was not completely 

cleaned prior to the filtration experiment. Despite the different starting point, the evolution of 

resistance over all experiments is comparable. 

Increasing BWd from 0.5 min to 1 min increased the fouling reversibility from 32% to 

41%, indicating that foulants are more easily washed out away from the membrane pores during 

a longer backwash (Figure 5b). In fact, better fouling removal from UF membrane at increased 

BWd has been reported in the scientific literature for very variable filtration scenarios in terms 

of feed water characteristics and UF configurations [1,2,5,6,16-18], including other types of 

membrane systems such as microfiltration [9], ceramic membranes [25] and membrane 

bioreactors [26]. 

In our study, lengthening the BWd to 2 min was not accompanied by any increase of 

fouling reversibility. The existence of a threshold in BWd beyond which no further improvement 

is observed has also been observed by other researchers [1,23]. Ye et al. [1] attributed this trend 

to the fact that “excess backwash volume might also foul the membrane or the remaining 

fouling cake due to the impurities in the backwash flux”. 

Similarly to the previous set of experiments, turbidity and UV254 removals were 

removed at high extents (83% and 94%, respectively), whereas TOC removal was only 2% 

(with the exception at BWd of 0.5 when a TOC removal of 22% was attained). 
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Figure 5: Effect of backwash duration (BWd) on the a) total resistance of the fouled membrane, 

b) percentage of reversible fouling over the total membrane fouling and c) removal of turbidity, 

UV254 and TOC by the UF membrane (confidence intervals ≤4.5% at a confidence level of 95% 

for all cases). 
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3.4. Effect of the chemically enhanced BW composition (BWCEB-c) 

 

 The fouling rate and reversibility degree differed depending on the chemical cleaners 

used for the CEB (Figure 6). NaClO performed the best, exhibiting the lowest fouling rate and 

the maximum fouling reversibility degree (approx. 38%), closely followed by the combination 

of NaOH+NaClO (approx. 34%). Acidic and alkaline cleaning solutions are commonly 

employed to remove inorganic and organic foulants, respectively, but the use of citric acid and 

NaOH in this study contributed little to the reversibility of fouling (approx. 28-27%) compared 

to the blank (26%) (Figure 6b). 

These results compare well with those reported by Arnal et al. [7] and Zheng et al. [12], 

who found that NaClO as a cleaner added to the BW water performed the best at restoring the 

permeability of a UF membrane fouled after treatment of surface water [7] and wastewater [12], 

while NaOH had less influence compared to water. Similar results were observed by Espinasse 

et al. [29] after treating coupons of nanofiltration membrane with various cleaning agents. The 

benefits of using NaClO are explained by the fact that NaClO can oxidise the organic foulants 

accumulated on the membrane, generating more oxygen-containing functional groups (such as 

ketone, aldehyde and carboxylic acids), which due to their increased hydrophilicity are less 

attached to the membrane [12,29,30]. To exemplify the disinfection power of some chlorine-

based compounds, Laine et al. [31] reported that ceasing the dosage of chlorine in backwash 

water after 20 days of operation resulted in severe fouling of the membranes within 5 days. 

Alkaline agents have also been reported to be effective at detaching foulants (particularly 

organic ones) since at high pH many organic compounds are hydrolysed presenting, under their 

dissociated form, increased solubility and propensity to be detached from the membrane [29].  

Beyond the use of oxidant and alkaline agents separately, their combination has also 

been reported to be more effective at removing foulants from the membrane [29,30,32]. 

However, the combination of NaClO and NaOH in this study did not perform better than NaClO 

alone (Figure 6). The low performance of citric acid, which is effective for the removal of 

inorganic foulants via dissolution of salts and complexation of certain metals, is indicative that 

the fouling layer formed on the membrane was made up of organic materials rather than 

inorganic salts. 
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Figure 6: Effect of the CEB composition (BWCEB-c) on the a) total resistance of the fouled 

membrane, b) percentage of reversible fouling over the total membrane fouling by the UF 

membrane (confidence intervals ≤4.0% at a confidence level of 95% for all cases). 

 

3.5. Organic fouling composition on the UF membrane 

 

Figure 7 compares the concentration of TOC, DOC and each of the organic fraction in 

feed and permeate (with removal percentages in brackets) as analysed by HPSEC.  

Feed water showed TOC and DOC values of 4.0 and 3.3 mg/L, respectively. This 

difference (of 15%) indicated that even this water had passed through a sand filtration stage a 

fraction of the organic load was still in the form of particular or colloidal organic carbon. With 

regards to the organic fractions, HS was always the most predominant one, accounting for 56% 

of the total DOC, followed by the lighter BB and LMWN (20%) fractions, while the heavier BP 

fraction averaged only 4%. The LMWA fraction was always found below limit detection. This 

composition is in accordance with previous studies that also applied HPSEC for the 

fractionation of NOM after sand filtration of river water [33,34]. 
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Figure 7: Concentration of TOC, DOC and its fractions BP, HS, BB and LMWN in both feed 

and permeate streams (in brackets removal percentages by UF the membrane) 

 

The removal of TOC by the UF membrane was 10%, while the corresponding one for 

DOC was fairly low (4%). Larger differences in the removals were observed for the different 

organic fractions. UF membrane preferentially removed the heaviest (and biggest) fraction BP 

(removal percentage of 43%), while intermediate HS was removed at a percentage of 7% and 

lighter (and smaller) BB and LMWN seemed to entirely pass through the UF membrane. This 

finding is in agreement with Peter-Varbanets et al. [35], who also observed that “only 

biopolymers and the humic acid fraction of NOM were retained to some extent during 

filtration” of different types of water. The fact that BP was in percentage the most retained 

material was expected based on size exclusion effects [22,36,37] and was in accordance with 

other studies that have observed a flux decline through UF membrane when the concentration of 

BP was increased within a range of concentrations similar to that in the present study 

[35,38,39].  

Based on a comparison between the composition of feed and permeate streams, fouling 

on UF membranes was anticipated to be made up of 67% HS (amounting 469 µg) and 33% BP 

(amounting 229 µg) (percentages referred to the total DOC removed by UF). It is of note that 

20% of the 229 µg of BP retained on the UF membrane consisted of protein-like compounds, 

indicating preferential removal of polysaccharides over proteinaceous substances. This is in 

agreement with other researchers that have applied HPSEC in the ultrafiltration of water [22].  

 

3.6. Fouling detachment after each backwashing and cleaning 

 

UF membranes are periodically backwashed with ultrafiltered water to remove 

deposited matter from the membrane and restore its original permeability as much as possible. 
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Detachment of organic matter from the UF membrane was evident as the backwash stream was 

richer in absolute TOC concentration (4.7 mg/L) than ultrafiltered water used for the backwash 

(3.6 mg/L). The composition of such backwash stream was 9% BP, 51% HS, 20% BB and 20% 

LMWN. In comparison with the ultrafiltered permeate, it was found to be enriched in BP (by 

5%) and impoverished in HS (by 5%), while the concentrations of BB and LMWN were 

essentially the same.  

Figure 9 compares the initial organic mass (in µg) fouling the UF membrane with the 

mass remaining after applying BW (+CEBs), CIP-B and CIP-A calculated through a mass-

balance from the concentration of each organic fraction within each volume stream.  

It can be seen that BW(+CEBs) was able to detach 33% of the initial BP but only 9% of 

the initial HS. The enrichment in BP suggested that components within this fraction, in 

particular polysaccharides rather than proteins, were not rigidly attached to the membrane but 

amenable to be washed out. This behaviour is likely due essentially to their size relative to that 

of the membrane pores: organic substances within the BP fraction much larger than the 

membrane pores lead to cake formation, which is more readily detached, while lighter fractions 

such as HS can cause pore blocking, build-up a denser cake layer less readily washed out or be 

adsorbed onto the membrane material [8,32]. The remaining BP and HS on the membrane 

would explain the irreversible fouling (never completely avoided whatever the BW regime 

applied) that resulted in the gradual increase of total resistance over time (Figures 3-6). Which is 

of these fractions has a larger impact on the membrane resistance is not clear.  

HS was found in this study to be the most retained fraction in terms of amount (but not 

of percentage) (Figure 8). HS is considered by some studies of minor relevance in terms of 

fouling due to their high transmission through the mesoporous UF membrane [22,38,39], 

whereas it is considered a detrimental foulant causing severe hydraulically irreversible fouling  

by some others [40].  

Opposite to HS, BP was found to be the most retained fraction in terms of percentage 

(but not of amount) (Figure 8), in agreement with other previous studies [20,22]. Its impact on 

fouling depends however upon its components: polysaccharides are believed to cause only 

hydraulically reversible fouling, while protein-like substances are thought to induce 

hydraulically irreversible fouling [22,39]. The major impact of proteins on fouling may be 

caused to the fact that they are more compact and can be retained at or inside the pores, thus 

resulting in the constriction and/or blockage of the membrane pores [39]. The finding in this 

study that 20% of the BP retained by the UF membrane was made of protein-like substances 

may explain why BP was not completely detached after the application of BW(+CEB) (Figure 

9). 

In this study, because a portion of both BP and HS fractions were attached on the UF 

membrane, it could not be elucidated whether fouling was mainly caused by one or another (or 

Page 19 of 26

URL: http://mc.manuscriptcentral.com/tdwt

Desalination and Water Treatment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

20 

 

both) fraction. Clearly, more investigations are required to identify if HS or BP contributes most 

to hydraulically (ir)reversible membrane fouling during UF of different waters. 

 

 

Figure 9: Evolution of mass of BP and HS remaining on the UF membrane (µg) after the 

successive application of BW (+CEBs), CIP-B and CIP-A. 

 

Soaking the membrane with the CIP-B solution resulted in a detachment of a further 

32% of the initial BP retained by the membrane, but on contrary no HS was detached at all, 

corroborating that this fraction was rigidly tight to the membrane and not easily detached by 

NaOH either NaClO under the experimental conditions of this study. As mentioned above in 

this study, the detachment of BP may be explained by the fact that the constituents of the BP 

fraction (polysaccharides, proteins) are hydrolised at high pH (even the weakest phenolic groups 

dissociate at such a high pH) and oxidised, increasing their solubility and therefore being more 

prone to be detached from the membrane [29]. Finally, the performance of an acid solution 

(CIP-A) could not be quantified because the organic fractions detached, if any, might be in the 

HPSEC chromatograms overwhelmed by the very high concentration of citric acid employed as 

cleaning agent. However, and also according with what was discussed in previous sections, 

organic fouling detachment is expected to be of minor importance since acid cleanings are 

applied commonly to eliminate inorganic foulants from the membrane (e.g. Fe and Mn) [32]. 

This is in qualitative agreement with Strugholtz et al., who found that NaOH and in particular 

NaClO were effective at removing both BP and HS while HCl was not [32]. The fact that 

organic fractions were analysed in their study only in the cleaning solution did not allow 
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determine how much BP and HS were remaining on the membrane and, hence, compare results 

with the ones obtained in this study. 

 

 

4. CONCLUSIONS 

 

Reversibility of fouling on a bench-scale UF membrane treating decanted water under 

different BW regimes was assessed in this study. The BW regimes were varied in terms of 

backwash TMP (BWTMP), backwash duration (BWd), backwash frequency (BWf) and 

chemically enhanced backwash composition (BWCEB-c). Permeate quality was monitored in 

terms of turbidity, UV254 and TOC. 

 Although differing in their efficiency, all BW regimes proved to contribute to control 

fouling on UF membranes. Nevertheless, results also showed that irreversible fouling was never 

completely avoided whatever the BW regime applied, resulting in a gradual increase of total 

resistance over time. Splitting the Rfouling into its components, it was found that Rirrev was always 

higher than Rrev. 

As expected, the degree of reversibility depended on the BW-related variables. Higher 

BWTMP provided higher degrees of fouling reversibility, with Rrev percentage below 30% at 

BWTMP of 0.7 and 1.0 bar, but of 31% at BWTMP of 1.5 bar and up to 41% at BWTMP of 1.8 bar. 

Concerning the BWf, the more frequent the BW the higher the reversibility of fouling: fouling 

reversibility decreased from 50% at BWf of 10 min to 41% at BWf of 20 min and below 37% at 

both BWf of 40 and 60 min. Similarly, increasing BWd from 0.5 min to 1 min increased the 

fouling reversibility from 32% to 41%, but lengthening the BWd to 2 min was not accompanied 

by any further increase of fouling reversibility. To sum up, the more intensive a BW was (in 

terms of higher BWTMP, shortened BWf and prolonged BWd) the more effective it was in 

removing foulants from the membrane. This was so because less intensive BW allowed more 

material to be accumulated on the membrane surface during a filtration cycle, forming a fouling 

layer more tightly attached and compacted and exhibiting thus a lower degree of reversibility 

under a given BW. 

Concerning the composition of CEB, NaClO performed the best, exhibiting the 

maximum fouling reversibility percentage (approx. 38%), closely followed by the combination 

of NaOH+NaClO (approx. 34%), while citric acid and NaOH contributed little (approx. 28-

27%) compared to the blank (26%). 

With regards to the permeate quality, no significant differences were observed whatever 

the BW regime applied. Turbidity and UV254 removals were always above 80% and 90%, 

respectively, whereas TOC removal was generally below 10%. The low retention of TOC may 
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be explained by the predominance of small molecular weight (MW) organic fractions with 

MW≤1000 Da (much smaller than the nominal MWCO of the UF membrane of 300000 Da) 

present in the decanted water as determined in the subsequent experiments. 

While applying more intensive BW (in terms of higher BWTMP, shortened BWf and 

prolonged BWd) results in reduced membrane fouling, it also leads to higher water losses, 

energy consumption and chemicals requirements if CEB is applied, bringing down the 

operational efficiency of the UF treatment. A compromise solution must be taken to establish 

the optimal BW conditions that minimise both membrane fouling and total costs. 

Besides optimising the BW efficiency, new approaches to minimise membrane fouling 

have been researched. These include other physical methods to remove foulants from a 

membrane surface such as flushing, vibrations, air assisted BW, CO2 back permeation or 

combination of them [41]. Examples of such approaches are the works carried out by Bessiere et 

al. [42], who reported that coupling flushing with air assisted BW significantly reduced 

membrane fouling leading to energy savings of 65% compared to conventional BW when 

treating surface water with hollow-fibre UF modules; and Chen et al. [11], who found by 

employing a statistical factorial design that the optimal UF physical cleaning protocol consisted 

of a combination of BW followed by forward flushing when treating wastewater with a spiral 

wound UF system. All these studies conclude that minimising membrane fouling is still an open 

research field and that further efforts are required to develop optimised cleaning procedures. 

With regards to the fouling potential and reversibility of the organic fractions as 

analysed by HPSEC, UF membrane preferentially retained the heaviest (and biggest) fraction 

BP (removal percentage of 43%), while intermediate HS was retained at a percentage of 7% and 

lighter (and smaller) BB and LMWN seemed to entirely pass through the UF membrane. The 

pattern was expected from size exclusion effects [22,36,37]. Based on a mass-balance over the 

UF membrane, fouling was anticipated to be made up of 67% HS and 33% BP. 

The application of BW(+CEBs) resulted in the detachment of 33% of the initial BP but 

only 9% of the initial HS. This revealed that HS was more rigidly attached to the membrane 

whereas BP (in particular polysaccharides rather than protein-like substances) was more 

amenable to be washed out. Which of the fractions (BP or HS) remaining on the membrane 

contributed most on the irreversible fouling could not be elucidated in this study, but recent 

studies have concluded that protein-like substances represent a detrimental foulant that induce 

severe hydraulically irreversible fouling. This agrees with the finding that 20% of the BP 

fouling the UF membrane in this study consisted of proteinaceous materials. 

Soaking the membrane with an alkaline and oxidant solution (CIP-B) resulted in the 

detachment of a further 32% of the initial BP retained by the membrane, but on contrary no HS 

was detached at all. Finally, the performance of an acid solution (CIP-A) could not be quantified 

in this study because the organic fractions detached, if any, might be in the HPSEC 
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chromatograms overwhelmed by the very high concentration of citric acid employed as cleaning 

agent. However, organic fouling detachment is expected to be of minor importance since acid 

cleanings are applied commonly to eliminate inorganic foulants from the membrane (e.g. Fe and 

Mn). 
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