85 research outputs found

    A survey on RF and microwave doherty power amplifier for mobile handset applications

    Get PDF
    This survey addresses the cutting-edge load modulation microwave and radio frequency power amplifiers for next-generation wireless communication standards. The basic operational principle of the Doherty amplifier and its defective behavior that has been originated by transistor characteristics will be presented. Moreover, advance design architectures for enhancing the Doherty power amplifier’s performance in terms of higher efficiency and wider bandwidth characteristics, as well as the compact design techniques of Doherty amplifier that meets the requirements of legacy 5G handset applications, will be discussed.Agencia Estatal de Investigación | Ref. TEC2017-88242-C3-2-RFundação para a Ciência e a Tecnologia | Ref. UIDP/50008/201

    A review of technologies and design techniques of millimeter-wave power amplifiers

    Get PDF
    his article reviews the state-of-the-art millimeter-wave (mm-wave) power amplifiers (PAs), focusing on broadband design techniques. An overview of the main solid-state technologies is provided, including Si, gallium arsenide (GaAs), GaN, and other III-V materials, and both field-effect and bipolar transistors. The most popular broadband design techniques are introduced, before critically comparing through the most relevant design examples found in the scientific literature. Given the wide breadth of applications that are foreseen to exploit the mm-wave spectrum, this contribution will represent a valuable guide for designers who need a single reference before adventuring in the challenging task of the mm-wave PA design

    Passive and active components development for broadband applications

    Get PDF
    Recently, GaN HEMTs have been proven to have numerous physical properties, resulting in transistors with greatly increased power densities when compared to the other well-established FET technologies. This advancement spurred research and product development towards power-band applications that require both high power and high efficiency over the wide band. Even though the use of multiple narrow band PAs covering the whole band has invariably led to better performance in terms of efficiency and noise, there is an associated increase in cost and in the insertion loss of the switches used to toggle between the different operating bands. The goal, now, of the new technology is to replace the multiple narrow band PAs with one broadband PA that has a comparable efficiency performance. In our study here, we have investigated a variety of wide band power amplifiers, including class AB PAs and their implementation in distributed and feedback PAs.Additionally, our investigation has included switching-mode PAs as they are well-known for achieving a relatively high efficiency. Besides having a higher efficiency, they are also less susceptible to parameter variations and could impose a lower thermal stress on the transistors than the conventional-mode PAs. With GaN HEMTs, we have demonstrated: a higher than 37 dBm output power and a more than 30% drain efficiency over 0.02 to 3 GHz for the distributed power amplifier; a higher than 30 dBm output power with more than a 22% drain efficiency over 0.1 to 5 GHz for the feedback amplifier; and at least a 43 dBm output power with a higher than 63% drain efficiency over 0.05 to 0.55 GHz for the class D PA. In many communication applications, however, achieving both high efficiency and linearity in the PA design is required. Therefore, in our research, we have evaluated several linearization and efficiency enhancement techniques.We selected the LInear amplification with Nonlinear Components (LINC) approach. Highly efficient combiner and novel efficiency enhancement techniques like the power recycling combiner and adaptive bias LINC schemes have been successfully developed and verified to achieve a combined high efficiency with a relatively high linearity

    Amplifier Architectures for Wireless Communication Systems

    Get PDF
    Ever-increasing demand in modern wireless communication systems leads researchers to focus on design challenges on one of the main components of RF transmitters and receivers, namely amplifiers. On the transmitter side, enhanced efficiency and broader bandwidth over single and multiple bands on power amplifiers will help to have superior performance in communication systems. On the other hand, for the receiver side, having low noise and high gain will be necessary to ensure good quality transmission over such systems. In light of these considerations, a unique approach in design methodologies are studied with low noise amplifiers (LNAs) for RF receivers and the Doherty technique is analyzed for efficiency enhancement for power amplifiers (PA) on the transmitters. This work can be outlined in two parts. In the first part, Low Noise RF amplifier designs with Bipolar Junction Transistor (BJT) are studied to achieve better performing LNAs for receivers. The aim is to obtain a low noise figure while optimizing the bandwidth and achieving a maximum available gain. There are two designs that are operating at different center frequencies and utilizing different transistors. The first design is a wideband low-noise amplifier operating at 2 GHz with a high power BJT. The proposed design uses only distributed elements to realize the input and output matching networks. Additionally, a passive DC bias network is used instead of an active DC bias network to avoid possible complications due to the lumped elements parasitic effects. The matching networks are designed based on the reflection coefficients that are derived based on the transistor’s available regions. The second design is a low voltage standing wave ratio (VSWR) amplifier with a low noise figure operating at 3 GHz. This design is following the same method as in the first design. Both these amplifiers are designed to operate in broadband applications and can be good candidates for base stations. The second part of this work focuses on the transmitter side of communication systems. For this part, Doherty Power Amplifier (DPA) is analyzed as an efficiency enhancement technique for PAs. A modified architecture is proposed to have wider bandwidth and higher efficiency. In the proposed design, the quarter-wave impedance inverter was eliminated. The input and the output of the main and peak amplifiers are matched to the load directly. Additionally, the input and output matching networks are realized only using distributed elements. The selected transistor for this design is a 10 W Gallium Nitride (GaN). The fabricated amplifier operates at the center frequency of 2 GHz and provides 40% fractional bandwidth, 54% of maximum power-added efficiency, and 12.5 dB or better small-signal gain. The design is showing promising results to be a good candidate for better-performing transmitters over the L- and S- band

    MMIC-based Low Phase Noise Millimetre-wave Signal Source Design

    Get PDF
    Wireless technology for future communication systems has been continuously evolving to meet society’s increasing demand on network capacity. The millimetre-wave frequency band has a large amount of bandwidth available, which is a key factor in enabling the capability of carrying higher data rates. However, a challenge with wideband systems is that the capacity of these systems is limited by the noise floor of the local oscillator (LO). The LO in today’s communication systems is traditionally generated at low frequency and subsequently multiplied using frequency multipliers, leading to a significant degradation of the LO noise floor at millimetre-wave frequencies. For this reason, the thesis considers low phase noise millimetre-wave signal source design optimised for future wideband millimetre-wave communications.In an oscillator, low frequency noise (LFN) is up-converted into phase noise around the microwave signal. Thus, aiming for low phase noise oscillator design, LFN characterisations and comparisons of several common III-V transistor technologies, e.g. GaAs-InGaP HBTs, GaAs pHEMTs, and GaN HEMTs, are carried out. It is shown that GaN HEMTs have good potential for oscillator applications where far-carrier phase noise performance is critical, e.g. wideband millimetre-wave communications. Since GaN HEMT is identified as an attractive technology for low noise floor oscillator applications, an in-depth study of some factors which affects LFN characteristics of III-N GaN HEMTs such as surface passivation methods and variations in transistor geometry are also investigated. It is found that the best surface passivation and deposition method can improve the LFN level of GaN HEMT devices significantly, resulting in a lower oscillator phase noise. Several MMIC GaN HEMT based oscillators including X-band Colpitts voltage-controlled-oscillators (VCOs) and Ka-band reflection type oscillators are demonstrated. It is verified that GaN HEMT based oscillators can reach a low noise floor. For instance, X-band GaN HEMT VCOs and a Ka-band GaN HEMT reflection type oscillator with 1 MHz phase noise performance of -135 dBc/Hz and -129 dBc/Hz, respectively, are demonstrated. These results are not only state-of-the-art for GaN HEMT oscillators, but also in-line with the best performance reported for GaAs-InGaP HBT based oscillators. Further, the MMIC oscillator designs are combined with accurate phase noise calculations based on a cyclostationary method and experimental LFN data. It has been seen that the measured and calculated phase noise agree well.The final part of this thesis covers low phase noise millimetre-wave signal source design and a comparison of different architectures and technological approaches. Specifically, a fundamental frequency 220 GHz oscillator is designed in advanced 130 nm InP DHBT process and a D-band signal source is based on the Ka-band GaN HEMT oscillator presented above and followed by a SiGe BiCMOS MMIC including a sixtupler and an amplifier. The Ka-band GaN HEMT oscillator is used to reach the critical low noise floor. The 220 GHz signal source presents an output power around 5 dBm, phase noise of -110 dBc/Hz at 10 MHz offset and a dc-to-RF efficiency in excess of 10% which is the highest number reported in open literature for a fundamental frequency signal source beyond 200 GHz. The D-band signal source, on the other hand, presents an output power of 5 dBm and phase noise of -128 dBc/Hz at 10 MHz offset from a 135 GHz carrier signal. Commenting on the performance of these two different millimetre-wave signal sources, the GaN HEMT/SiGe HBT source presents the best normalized phase noise at 10 MHz, while the integrated InP HBT oscillator demonstrates significantly better conversion efficiency and still a decent phase noise

    Efficient and Wideband Load Modulated Power Amplifiers for Wireless Communication

    Get PDF
    The increasing demand for mobile data traffic has resulted in new challenges and requirements for the development of the wireless communication infrastructure. With the transition to higher frequencies and multi-antenna systems, radio frequency (RF) hardware performance, especially the power amplifier (PA), becomes increasingly important. Enhancing PA energy efficiency and bandwidth is vital for maximizing channel capacity, reducing operational costs, and facilitating integration.In the first part of the thesis, the bandwidth limitations of the standard two-way Doherty PA are discussed. A comprehensive analysis is provided, and the frequency responses of different Doherty combiner networks are presented. Furthermore, a Doherty combiner network is proposed, notable for its inherent broadband frequency and its capacity to account for the influence of output parasitics and packaged components from the active devices. The introduced Doherty combiner network is experimentally verified by a wideband gallium nitride (GaN) Doherty PA operating over 1.6-2.7 GHz.In the second part of the thesis, an analytically based combiner synthesis approach for the three-stage Doherty PA is proposed and presented. A compact output combiner network, together with the input phase delays, is derived directly from transistor load-pull data and the PA design requirements. The technique opens up new design space for three-stage Doherty PAs with reconfigurable high-efficiency power back-off levels. The utility of the proposed technique is demonstrated by the implementation of a 30-W GaN three-stage Doherty PA prototype at 2.14 GHz. Measurements show that a drain efficiency of 68% and 55% is exhibited at 6- and 10-dB back-off power, respectively.In the third part, a new PA architecture named the circulator load modulated amplifier (CLMA), is proposed. This architecture utilizes active load modulation for achieving enhanced back-off efficiency. Two active devices are incorporated in this innovative architecture, and a non-reciprocal circulator-based combiner is leveraged. Following this, the sequential CLMA (SCLMA) is introduced, characterized by its ability to enhance back-off efficiency without the necessity of load modulation. GaN demonstrator circuits for both CLMA and SCLMA architectures, whether with dual-input or RF single-input, are designed and fabricated, with excellent performance being measured.\ua0The thesis contributes novel design techniques and architectures to enhance PA efficiency and bandwidth. These findings pave the way for energy-efficient and adaptable RF transmitters in future wireless communication systems

    Impacto e compensação da largura de banda vídeo em amplificadores de potência de elevado rendimento

    Get PDF
    The aim of this work is to determine, quantify and model the performance degradation of wideband power amplifiers when subject to concurrent multiband excitation, with a particular focus on the average efficiency variation. The origins of this degradation are traced to two main transistor properties: the output baseband current generation by the nonlinear transconductance, and the input baseband current generation by the nonlinear gate-source capacitance variation. Each mechanism is analised separately, first by providing a qualitative and intuitive explanation of the processes that lead to the observed efficiency degradation, and then by deriving models that allow the prediction of the average efficiency dependence with the input signal bandwidth. The resulting knowledge was used to improve matching network design, in order to optimize baseband impedance terminations and prevent the efficiency degradation. The derived models were experimentally validated with several PA prototypes implemented with Gallium Nitride HEMT devices, using both conventional and optimized baseband impedance matching networks, achieving over 400MHz instantaneous bandwidth with uncompromised efficiency. The consolidation of the wideband degradation mechanisms described in this work are an important step for modelling and design of wideband, high-efficiency power amplifiers in current and future concurrent multi-band communication systems.O objetivo deste trabalho é determinar, quantificar e modelar a degradação do desempenho de amplificadores de banda-larga quando submetidos a excitação multi-banda concorrente, com particular ênfase na variação do rendimento energético. As origens desta degradação são devidas a duas das principais propriedades do transístor: a geração de corrente em banda-base na saída pela variação não-linear da transcondutância, e a geração de corrente de banda-base na entrada pela variação não-linear da capacidade interna porta-fonte. Cada um destes mecanismos é analisado isoladamente, primeiro por uma explicação qualitativa e intuitiva dos processos que levam à degradação de eficiência observada e, em seguida, através da derivação de modelos que permitem a previsão da degradação do rendimento médio em função da largura de banda do sinal de entrada. O conhecimento resultante foi utilizado para melhorar o desenvolvimento de malhas de adaptação, por forma a otimizar as terminações de impedância em banda-base e prevenir a degradação do rendimento. Os modelos desenvolvidos foram validados experimentalmente em vários amplificadores de potência implementados com transístores de tecnologia GaN HEMT, utilizando malhas de adaptação convencionais e otimizadas, onde se obteve 400MHz de largura de banda instantânea sem degradação do rendimento. A consolidação dos mecanismos de degradação descritos neste trabalho são um importante passo para a modelação e projeto de amplificadores de elevado rendimento e largura-debanda para os sistemas de comunicação multi-banda concorrente convencionais e do futuro.Programa Doutoral em Engenharia Eletrotécnic
    corecore