5,198 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Energy Harvesting and Management for Wireless Autonomous Sensors

    No full text
    Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols

    Photovoltaic sample-and-hold circuit enabling MPPT indoors for low-power systems

    No full text
    Photovoltaic (PV) energy harvesting is commonly used to power autonomous devices, and maximum power point tracking (MPPT) is often used to optimize its efficiency. This paper describes an ultra low-power MPPT circuit with a novel sample-and-hold and cold-start arrangement, enabling MPPT across the range of light intensities found indoors, which has not been reported before. The circuit has been validated in practice and found to cold-start and operate from 100 lux (typical of dim indoor lighting) up to 5000 lux with a 55cm2 amorphous silicon PV module. It is more efficient than non-MPPT circuits, which are the state-of-the-art for indoor PV systems. The proposed circuit maximizes the active time of the PV module by carrying out samples only once per minute. The MPPT control arrangement draws a quiescent current draw of only 8uA, and does not require an additional light sensor as has been required by previously-reported low-power MPPT circuits

    Real-time image streaming over a low-bandwidth wireless camera network

    Get PDF
    In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE

    Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer

    Get PDF
    The continuous development of the internet of things (IoT) infrastructure and applications is paving the way for advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Nodes (WSNs) able to collect and transmit data through wireless communication channels, while often positioned in locations that are difficult to access, is driving research into innovative solutions involving energy harvesting (EH) and wireless power transfer (WPT) to eventually allow battery-free sensor nodes. Due to the pervasiveness of radio frequency (RF) energy, RF EH and WPT are key technologies with the potential to power IoT devices and smart sensing architectures involving nodes that need to be wireless, maintenance free, and sufficiently low in cost to promote their use almost anywhere. This paper presents a state-of-the-art, ultra-low power 2.5 W highly integrated mixed-signal system on chip (SoC), for multi-source energy harvesting and wireless power transfer. It introduces a novel architecture that integrates an ultra-low power intelligent power management, an RF to DC converter with very low power sensitivity and high power conversion efficiency (PCE), an Amplitude-Shift-Keying/Frequency-Shift-Keying (ASK/FSK) receiver and digital circuitry to achieve the advantage to cope, in a versatile way and with minimal use of external components, with the wide variety of energy sources and use cases. Diverse methods for powering wireless Sensor Nodes through energy harvesting and wireless power transfer are implemented providing related system architectures and experimental results

    A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote

    Get PDF
    A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote (SiNAPS) is augmented by low-power electronics for power management and sensor interfacing, on a chip area of 0.25mm2. Direct charging of the target battery (e.g., NiMH microbattery) is achieved with end-to-end efficiencies up to 90% at AM1.5 illumination and 80% under 100 times reduced intensity. This requires matching the voltages of the photovoltaic module and the battery circumventing maximum power point tracking. Single solar cells show efficiencies up to 10% under AM1.5 illumination and open circuit voltages, Voc, of 450-500mV. To match the battery’s voltage the miniaturised solar cells (~1mm2 area) are connected in series via wire bonding. The chemical sensor platform (mm2 area) is set up to detect hydrogen gas concentration in the low ppm range and over a broad temperature range using a low power sensing interface circuit. Using Telran TZ1053 radio to send one sample measurement of both temperature and H2 concentration every 15 seconds, the average and active power consumption for the SiNAPS mote are less than 350nW and 2.1 ÎŒW respectively. Low-power miniaturised chemical sensors of liquid analytes through microfluidic delivery to silicon nanowires are also presented. These components demonstrate the potential of further miniaturization and application of sensor nodes beyond the typical physical sensors, and are enabled by the nanowire materials platform
    • 

    corecore