3,536 research outputs found

    Cho kosoku hikari kukan tsushin shisutemu ni okeru denpa tokusei no kenkyu

    Get PDF
    制度:新 ; 文部省報告番号:甲2361号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2007/2/7 ; 早大学位記番号:新443

    Bringing America Up to Speed: States' Role in Expanding Broadband

    Get PDF
    Describes innovative state programs to expand access to high-quality, high-speed broadband; the National Broadband Plan -- a partnership of state, federal, and local governments; providers; and nonprofits -- and roles and challenges for states

    Network virtualization in next-generation cellular networks: a spectrum pooling approach

    Get PDF
    The hardship of expanding the cellular network market results from the tremendous high cost of mobile infrastructure, i.e. the capital expenditures (CAPEX) and the operational expenditures (OPEX). Spectrum Sharing is one of the proposed solution for the high-cost of scalability of cellular networks. However, most of the proposed spectrum pooling frameworks in the literature are mostly approached from a technical view besides there are no good cost models based on real datasets for quantifying the circumstances under which sharing the spectrum and network resources would be beneficial to mobile operators. In this thesis, by studying different sharing scenarios in a fiber-based backhaul mobile network, we assess the incentives for service providers (SPs) to share spectrum/infrastructure in different cellular market areas/economic areas (CMA/BEAs) with different population density, allocated bandwidth (BW), spectrum bid values and considering different network topologies. Moreover, we look at the technical problem of sharing the spectrum between two SPs sharing the same basestation (BS), yet they have different traffic demand as well as different QoS constraints. We design a resource allocation scheme to provision real-time (RT), non-real-time (NRT) as well as Ultra-reliable Low Latency Communications (URLLC) traffic in a single shared BS scenario such that SPs achieve isolation, fairness and enforce their QoS constraints. Finally, we exploit spectrum pooling to develop an approach for dynamically re-configuring the base stations that survive a disaster and are powered by a microgrid to form a multi-hop mesh network in order to provide local cellular service

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A Comprehensive Survey on Moving Networks

    Get PDF
    The unprecedented increase in the demand for mobile data, fuelled by new emerging applications such as HD video streaming and heightened online activities has caused massive strain on the existing cellular networks. As a solution, the 5G technology has been introduced to improve network performance through various innovative features such as mmWave spectrum and HetNets. In essence, HetNets include several small cells underlaid within macro-cell to serve densely populated regions. Recently, a mobile layer of HetNet has been under consideration by the researchers and is often referred to as moving networks. Moving networks comprise of mobile cells that are primarily introduced to improve QoS for commuting users inside public transport because the QoS is deteriorated due to vehicular penetration losses. Furthermore, the users inside fast moving public transport also exert excessive load on the core network due to large group handovers. To this end, mobile cells will play a crucial role in reducing overall handover count and will help in alleviating these problems by decoupling in-vehicle users from the core network. To date, remarkable research results have been achieved by the research community in addressing challenges linked to moving networks. However, to the best of our knowledge, a discussion on moving networks in a holistic way is missing in the current literature. To fill the gap, in this paper, we comprehensively survey moving networks. We cover the technological aspects and their applications in the futuristic applications. We also discuss the use-cases and value additions that moving networks may bring to future cellular architecture and identify the challenges associated with them. Based on the identified challenges we discuss the future research directions.Comment: This survey has been submitted to IEEE Communications Surveys & Tutorial

    A high bit rate flexible MAC protocol for monitoring applications using 60ghz radio technology

    Get PDF
    In recent years there has been a growing trend in optical wireless convergence. One particular aspect of this is 60 GHz radio-over-fiber technology. It is intended for use in wireless personal area networks. However, we think that the same technology could be used for monitoring applications in the indoor environment. It could be used to detect emergency situations or to detect intruders. We shall examine reasons why this choice might be a suitable one. We shall then propose a MAC layer protocol to accomplish this task. Since in case of emergency we might require to obtain data from only one node for an extended duration, flexibility in implementation is required. We shall develop an adaptive MAC protocol where this would be possible. We accomplish this by including two protocol modes called the Icarus mode, which is to be used in case of an emergency and the Resync mode which is used when normality is restored. A significant problem at high frequencies is that the beam becomes increasingly narrow and behaves more in a ray like condition. This implies that particularly in an indoor environment it is possible that the beam may be accidentally blocked. In this case the node must be able shift the beam in order to enable communication. We demonstrate three such strategies and offer a comparative analysis.M.S.Committee Chair: Chang, Gee-Kung; Committee Member: Barry , John; Committee Member: Gaylord, To

    Delivery of broadband services to SubSaharan Africa via Nigerian communications satellite

    Get PDF
    Africa is the least wired continent in the world in terms of robust telecommunications infrastructure and systems to cater for its more than one billion people. African nations are mostly still in the early stages of Information Communications Technology (ICT) development as verified by the relatively low ICT Development Index (IDI) values of all countries in the African region. In developing nations, mobile broadband subscriptions and penetration between 2000-2009 was increasingly more popular than fixed broadband subscriptions. To achieve the goal of universal access, with rapid implementation of ICT infrastructure to complement the sparsely distributed terrestrial networks in the hinterlands and leveraging the adequate submarine cables along the African coastline, African nations and their stakeholders are promoting and implementing Communication Satellite systems, particularly in Nigeria, to help bridge the digital hiatus. This paper examines the effectiveness of communication satellites in delivering broadband-based services
    corecore