243 research outputs found

    Efficient and Effective Deep Multi-view Subspace Clustering

    Full text link
    Recent multi-view subspace clustering achieves impressive results utilizing deep networks, where the self-expressive correlation is typically modeled by a fully connected (FC) layer. However, they still suffer from two limitations. i) The parameter scale of the FC layer is quadratic to sample numbers, resulting in high time and memory costs that significantly degrade their feasibility in large-scale datasets. ii) It is under-explored to extract a unified representation that simultaneously satisfies minimal sufficiency and discriminability. To this end, we propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E2^2MVSC). Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency. Most importantly, the proposed method devises a multi-type auto-encoder to explicitly decouple consistent, complementary, and superfluous information from every view, which is supervised by a soft clustering assignment similarity constraint. Following information bottleneck theory and the maximal coding rate reduction principle, a sufficient yet minimal unified representation can be obtained, as well as pursuing intra-cluster aggregation and inter-cluster separability within it. Extensive experiments show that E2^2MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets

    Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT

    Full text link
    [EN] In the cognitive computing of intelligent industrial Internet of Things, clustering is a fundamental machine learning problem to exploit the latent data relationships. To overcome the challenge of kernel choice for nonlinear clustering tasks, multiple kernel clustering (MKC) has attracted intensive attention. However, existing graph-based MKC methods mainly aim to learn a consensus kernel as well as an affinity graph from multiple candidate kernels, which cannot fully exploit the latent graph information. In this article, we propose a novel pure graph-based MKC method. Specifically, a new graph model is proposed to preserve the local manifold structure of the data in kernel space so as to learn multiple candidate graphs. Afterward, the latent consistency and selfishness of these candidate graphs are fully considered. Furthermore, a graph connectivity constraint is introduced to avoid requiring any postprocessing clustering step. Comprehensive experimental results demonstrate the superiority of our method.This work was supported in part by Sichuan Science and Technology Program under Grant 2020ZDZX0014 and Grant 2019ZDZX0119 and in part by the Key Lab of Film and TV Media Technology of Zhejiang Province under Grant 2020E10015.Ren, Z.; Mukherjee, M.; Lloret, J.; Venu, P. (2021). Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT. IEEE Transactions on Industrial Informatics. 17(4):2956-2963. https://doi.org/10.1109/TII.2020.3010357S2956296317

    Symmetric Subspace Learning for Image Analysis

    Get PDF

    Two-Level Text Classification Using Hybrid Machine Learning Techniques

    Get PDF
    Nowadays, documents are increasingly being associated with multi-level category hierarchies rather than a flat category scheme. To access these documents in real time, we need fast automatic methods to navigate these hierarchies. Today’s vast data repositories such as the web also contain many broad domains of data which are quite distinct from each other e.g. medicine, education, sports and politics. Each domain constitutes a subspace of the data within which the documents are similar to each other but quite distinct from the documents in another subspace. The data within these domains is frequently further divided into many subcategories. Subspace Learning is a technique popular with non-text domains such as image recognition to increase speed and accuracy. Subspace analysis lends itself naturally to the idea of hybrid classifiers. Each subspace can be processed by a classifier best suited to the characteristics of that particular subspace. Instead of using the complete set of full space feature dimensions, classifier performances can be boosted by using only a subset of the dimensions. This thesis presents a novel hybrid parallel architecture using separate classifiers trained on separate subspaces to improve two-level text classification. The classifier to be used on a particular input and the relevant feature subset to be extracted is determined dynamically by using a novel method based on the maximum significance value. A novel vector representation which enhances the distinction between classes within the subspace is also developed. This novel system, the Hybrid Parallel Classifier, was compared against the baselines of several single classifiers such as the Multilayer Perceptron and was found to be faster and have higher two-level classification accuracies. The improvement in performance achieved was even higher when dealing with more complex category hierarchies

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Inverse Projection Representation and Category Contribution Rate for Robust Tumor Recognition

    Full text link
    Sparse representation based classification (SRC) methods have achieved remarkable results. SRC, however, still suffer from requiring enough training samples, insufficient use of test samples and instability of representation. In this paper, a stable inverse projection representation based classification (IPRC) is presented to tackle these problems by effectively using test samples. An IPR is firstly proposed and its feasibility and stability are analyzed. A classification criterion named category contribution rate is constructed to match the IPR and complete classification. Moreover, a statistical measure is introduced to quantify the stability of representation-based classification methods. Based on the IPRC technique, a robust tumor recognition framework is presented by interpreting microarray gene expression data, where a two-stage hybrid gene selection method is introduced to select informative genes. Finally, the functional analysis of candidate's pathogenicity-related genes is given. Extensive experiments on six public tumor microarray gene expression datasets demonstrate the proposed technique is competitive with state-of-the-art methods.Comment: 14 pages, 19 figures, 10 table
    corecore