15 research outputs found

    Foundations of Trusted Autonomy

    Get PDF
    This book establishes the foundations needed to realize the ultimate goals for artificial intelligence, such as autonomy and trustworthiness. Aimed at scientists, researchers, technologists, practitioners, and students, it brings together contributions offering the basics, the challenges and the state-of-the-art on trusted autonomous systems in a single volume. The book is structured in three parts, with chapters written by eminent researchers and outstanding practitioners and users in the field. The first part covers foundational artificial intelligence technologies, while the second part covers philosophical, practical and technological perspectives on trust. Lastly, the third part presents advanced topics necessary to create future trusted autonomous systems. The book augments theory with real-world applications including cyber security, defence and space

    Assessing Operator Strategies for Real-time Replanning of Multiple Unmanned Vehicles

    Get PDF
    Future unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator controls a decentralized network of heterogeneous unmanned vehicles. This study examines the impact of allowing an operator to adjust the rate of prompts to view automation-generated plans on system performance and operator workload. Results showed that the majority of operators chose to adjust the replan prompting rate. The initial replan prompting rate had a significant framing effect on the replan prompting rates chosen throughout a scenario. Higher initial replan prompting rates led to significantly lower system performance. Operators successfully self-regulated their task-switching behavior to moderate their workload.This research is funded by the Office of Naval Research (ONR) and Aurora Flight Sciences

    Traffic incident management: A common operational picture to support situational awareness of sustainable mobility

    Get PDF
    Successful traffic incident management presupposes a multi-disciplinary approach. To meet appropriately the safety and mobility needs of all affected parties, traffic incidents call for a high level of collaboration and coordination of involved agencies. Effective traffic incident management activities rely in particular on flexible communications and information systems. Based on experiences from the military domain it is possible to develop strategic concepts that are related to the improvement of information sharing and collaboration. Such concepts can also be applied to enhanced traffic incident management information systems. The present paper aims to offer a review of the state of the art in this field and to illustrate the empirical usefulness and benefits of traffic incident management

    Fundamental aspects of netted radar performance

    Get PDF
    Netted radar employs several spatially distributed transmitters and receivers for information retrieval. This system topology offers many advantages over traditional monostatic and bistatic systems which use a single transmitter and a single receiver. For example, it provides better utilization of reflected energy, more flexible system arrangement and enhanced information retrieval capability. Therefore, the netted radar system is of emerging interests among radar researchers. This work investigates several fundamental aspects that determine netted radar performance. This includes netted radar sensitivity, the netted radar ambiguity function and the netted radar ground plane effect. Mathematical models are developed to provide a mean to examine different aspects of netted radar performance. Software simulations examine netted radar performance over a range of parameter variations. Simulation results show that netted radar can offer better performance over traditional monnostatic and bistatic radar in many cases. Some elementary field trials have been conducted using a prototype netted radar system developed within the UCL radar group to examine aspects of netted radar performance in practice. The field trials are focused on netted radar range and sensitivity which are fundamental. The field trial results show that the theoretical benefits that netted radar can offer are generally realizable in practice

    Experimental verification of multi-antenna techniques for aerial and ground vehicles’ communication

    Get PDF

    Transcranial Direct Current Stimulation Use in Warfighting: Benefits, Risks, and Future Prospects

    Get PDF
    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which provides unique potential to directly improve human capability on a temporary, at needs, basis. The purpose of this paper is to consider the utility of tDCS through analysis of the potential risks and benefits in the context of defence service personnel. First, we look at the potential benefits, focusing primarily on warfighter survivability and enriching cognition quality in support of command and control. Second, we look at the potential detriments to tDCS military use, focusing on adverse effects, safety considerations, and risk. Third, we examine how the level of risk can be mitigated through military doctrine development focusing on safety parameters and exclusion criteria. Finally, we explore the future prospects of military tDCS use, particularly in terms of addressing gaps in the literature so that tDCS can be used ethically and efficaciously at the level of individual personnel

    Development and performance evaluation of a multistatic radar system

    Get PDF
    Multistatic radar systems are of emerging interest as they can exploit spatial diversity, enabling improved performance and new applications. Their development is being fuelled by advances in enabling technologies in such fields as communications and Digital Signal Processing (DSP). Such systems differ from typical modern active radar systems through consisting of multiple spatially diverse transmitter and receiver sites. Due to this spatial diversity, these systems present challenges in managing their operation as well as in usefully combining the multiple sources of information to give an output to the radar operator. In this work, a novel digital Commercial Off-The-Shelf (COTS) based coherent multistatic radar system designed at University College London, named ‘NetRad’, has been developed to produce some of the first published experimental results, investigating the challenges of operating such a system, and determining what level of performance might be achievable. Full detail of the various stages involved in the combination of data from the component transmitter-receiver pairs within a multistatic system is investigated, and many of the practical issues inherent are discussed. Simulation and subsequent experimental verification of several centralised and decentralised detection algorithms in terms of localisation (resolution and parameter estimation) of targets was undertaken. The computational cost of the DSP involved in multistatic data fusion is also considered. This gave a clear demonstration of several of the benefits of multistatic radar. Resolution of multiple targets that would have been unresolvable in a conventional monostatic system was shown. Targets were also shown to be plotted as two-dimensional vector position and velocities from use of time delay and Doppler shift information only. A range of targets were used including some such as walking people which were particularly challenging due to the variability of Radar Cross Section (RCS). Performance improvements were found to be dependant on the type of multistatic radar, method of data fusion and target characteristics in question. It is likely that future work will look to further explore the optimisation of multistatic radar for the various measures of performance identified and discussed in this work
    corecore