3,144 research outputs found
Városi közterületek termikus komfortviszonyainak értékelése Szeged példáján különös tekintettel a látogatók szubjektív reakcióira
Recommended from our members
Mean radiant temperature from global-scale numerical weather prediction models
In human biometeorology, the estimation of mean radiant temperature (MRT) is generally considered challenging. This work presents a general framework to compute the MRT at the global scale for a human subject placed in an outdoor environment and irradiated by solar and thermal radiation both directly and diffusely. The proposed framework requires as input radiation fluxes computed by numerical weather prediction (NWP) models and generates as output gridded globe-wide maps of MRT. It also considers changes in the Sun’s position affecting radiation components when these are stored by NWP models as an accumulated-over-time quantity. The applicability of the framework was demonstrated using NWP reanalysis radiation data from the European Centre for Medium-Range Weather Forecasts. Mapped distributions of MRT were correspondingly computed at the global scale. Comparison against measurements from radiation monitoring stations showed a good agreement with NWP-based MRT (coefficient of determination greater than 0.88; average bias equal to 0.42 °C) suggesting its potential as a proxy for observations in application studies
Recommended from our members
Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI)
Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia
Outdoor Thermal Environments and Activities in Open Space: An Experiment Study in Humid Subtropical Climates
The outdoor thermal environment correlates with occupant behaviors in open spaces. The appropriate range of thermal environment that is conducive to outdoor activities, however, remains inadequately defined. Existing studies fail to characterize the behavioral responses to thermal environments in important dimensions including activity types, age or gender. We conducted field studies on six open spaces in Wuhan, China, a city with humid subtropical climate and ideal for this research. Data based on field observations, questionnaires, and measurement were collected under a variety of weather conditions over 4 years. We renovated a playground by adding shading shelters and vegetation cover to reduce summertime heat stress. On-site thermal environment were assessed using the Universal Thermal Climate Index (UTCI). Findings are as following: the outdoor thermal environment is a strong predictor of mean attendance over a period of time, but not spontaneous occupancy at a specific time or space; the Optimum Thermal Environment (OTE), defined as the range in which an open space is well-attended (attendance above 90% of peak value), is more consistent than the self-reported Thermal Acceptable Range (TAR) in this study. Behavioral responses to thermal environment differ by gender, age, and types of activities. The experiment confirmed the causality between outdoor thermal environment and activities: the renovated playground attracted 80% more occupants in summer; people stayed longer, reported less heat stress, and interacted with each other more often. Results remained significant after controlling for weather, air quality, daily and weekly routines. Findings had implications for the design of open spaces.postprin
Recommended from our members
Verification of heat stress thresholds for a health-based heatwave definition
Heatwaves represent a threat to human health and excess mortality is one of the associated negative effects. A health-based definition for heatwaves is therefore relevant, especially for early warning purposes, and it is here investigated via the Universal Thermal Climate Index (UTCI). The UTCI is a bioclimate index elaborated via an advanced model of human thermo-regulation that estimates the thermal stress induced by air temperature, wind speed, moisture and radiation on the human physiology. Using France as a testbed, the UTCI was computed from meteorological reanalysis data to assess the thermal stress conditions associated to heat-attributable excess mortality in five cities. UTCI values at different climatological percentiles were defined and evaluated in their ability to identify periods of excess mortality (PEMs) over 24 years. Using verification metrics such as the probability of detection (POD), the false alarm ratio (FAR) and the frequency bias (FB), daily minimum and maximum heat stress levels equal or above corresponding UTCI 95th percentiles (15±2°C and 34.5±1.5°C, respectively) for 3 consecutive days are demonstrated to correlate to PEMs with the highest sensitivity and specificity (0.69 ≤ POD ≤ 1, 0.19 ≤ FAR ≤ 0.46, 1 ≤ FB ≤ 1.48) than minimum, maximum and mean heat stress level singularly and other bioclimatological percentiles. This finding confirms the detrimental effect of prolonged, unusually high heat stress at day and night time and suggests the UTCI 95th percentile as a health meaningful threshold for a potential heat health watch warning system
Recommended from our members
Mapping combined wildfire and heat stress hazards to improve evidence-based decision making
Heat stress and forest fires are often considered highly correlated hazards as extreme temperatures play a key role in both occurrences. This commonality can influence how civil protection and local responders deploy resources on the ground and could lead to an underestimation of potential impacts, as people could be less resilient when exposed to multiple hazards. In this work, we provide a simple methodology to identify areas prone to concurrent hazards, exemplified with, but not limited to, heat stress and fire danger. We use the combined heat and forest fire event that affected Europe in June 2017 to demonstrate that the methodology can be used for analysing past events as well as making predictions, by using reanalysis and medium-range weather forecasts, respectively. We present new spatial layers that map the combined danger and make
suggestions on how these could be used in the context of a Multi-Hazard Early Warning System. These products could be particularly valuable in disaster risk reduction and emergency response management, particularly for civil protection, humanitarian agencies and other first responders whose role is to identify priorities during pre-interventions and emergencies
Launch summary for 1981
Launchings identified from reports received for the period January 1, 1981 through December 31, 1981 including sounding rocket, satellite and space probe launchings are summarized
Recommended from our members
Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI)
In this work the potential of the Universal Thermal Climate Index (UTCI) as a heat-related health risk indicator in Europe is demonstrated. The UTCI is a bioclimate index that uses a multi-node human heat balance model to represent the heat stress induced by meteorological conditions to the human body. Using 38 years of meteorological reanalysis data, UTCI maps were computed to assess the thermal bioclimate of Europe for the summer season. Patterns of heat stress conditions and non-thermal stress regions are identified across Europe. An increase in heat stress up to 1°C is observed during recent decades. Correlation with mortality data from 17 European countries revealed that the relationship between the UTCI and death counts depends on the bioclimate of the country, and death counts increase in conditions of moderate and strong stress, i.e. when UTCI is above 26°C and 32°C. The UTCI’s ability to represent mortality patterns is demonstrated for the 2003 European heatwave. These findings confirm the importance of UTCI as a bioclimatic index that is able to both capture the thermal bioclimatic variability of Europe, and relate such variability with the effects it has on human health
- …
