100 research outputs found

    Modeling Bitcoin Contracts by Timed Automata

    Full text link
    Bitcoin is a peer-to-peer cryptographic currency system. Since its introduction in 2008, Bitcoin has gained noticeable popularity, mostly due to its following properties: (1) the transaction fees are very low, and (2) it is not controlled by any central authority, which in particular means that nobody can "print" the money to generate inflation. Moreover, the transaction syntax allows to create the so-called contracts, where a number of mutually-distrusting parties engage in a protocol to jointly perform some financial task, and the fairness of this process is guaranteed by the properties of Bitcoin. Although the Bitcoin contracts have several potential applications in the digital economy, so far they have not been widely used in real life. This is partly due to the fact that they are cumbersome to create and analyze, and hence risky to use. In this paper we propose to remedy this problem by using the methods originally developed for the computer-aided analysis for hardware and software systems, in particular those based on the timed automata. More concretely, we propose a framework for modeling the Bitcoin contracts using the timed automata in the UPPAAL model checker. Our method is general and can be used to model several contracts. As a proof-of-concept we use this framework to model some of the Bitcoin contracts from our recent previous work. We then automatically verify their security in UPPAAL, finding (and correcting) some subtle errors that were difficult to spot by the manual analysis. We hope that our work can draw the attention of the researchers working on formal modeling to the problem of the Bitcoin contract verification, and spark off more research on this topic

    Evaluating the Stream Control Transmission Protocol Using Uppaal

    Get PDF
    The Stream Control Transmission Protocol (SCTP) is a Transport Layer protocol that has been proposed as an alternative to the Transmission Control Protocol (TCP) for the Internet of Things (IoT). SCTP, with its four-way handshake mechanism, claims to protect the Server from a Denial-of-Service (DoS) attack by ensuring the legitimacy of the Client, which has been a known issue pertaining to the three-way handshake of TCP. This paper compares the handshakes of TCP and SCTP to discuss its shortcomings and strengths. We present an Uppaal model of the TCP three-way handshake and SCTP four-way handshake and show that SCTP is able to cope with the presence of an Illegitimate Client, while TCP fails. The results confirm that SCTP is better equipped to deal with this type of attack.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Timed Analysis of Security Protocols

    Get PDF
    We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of different attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol

    Randomized Reachability Analysis in Uppaal:Fast Error Detection in Timed Systems

    Get PDF

    A Note on Fault Diagnosis Algorithms

    Full text link
    In this paper we review algorithms for checking diagnosability of discrete-event systems and timed automata. We point out that the diagnosability problems in both cases reduce to the emptiness problem for (timed) B\"uchi automata. Moreover, it is known that, checking whether a discrete-event system is diagnosable, can also be reduced to checking bounded diagnosability. We establish a similar result for timed automata. We also provide a synthesis of the complexity results for the different fault diagnosis problems.Comment: Note: This paper is an extended version of the paper published in the proceedings of CDC'09, 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, December 2009

    Randomized reachability analysis in UPPAAL: fast error detection in timed systems*

    Get PDF

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Online On-the-Fly Testing of Real-time Systems

    Get PDF
    In this paper we present a framework, an algorithm and a new tool for online testing of real-time systems based on symbolic techniques used in UPPAAL model checker. We extend UPPAAL timed automata network model to a test specification which is used to generate test primitives and to check the correctness of system responses including the timing aspects. We use timed trace inclusion as a conformance relation between system and specification to draw a test verdict. The test generation and execution algorithm is implemented as an extension to UPPAAL and experiments carried out to examine the correctness and performance of the tool. The experiment results are promising

    Online On-the-Fly Testing of Real-time Systems

    Get PDF
    In this paper we present a framework, an algorithm and a new tool for online testing of real-time systems based on symbolic techniques used in UPPAAL model checker. We extend UPPAAL timed automata network model to a test specification which is used to generate test primitives and to check the correctness of system responses including the timing aspects. We use timed trace inclusion as a conformance relation between system and specification to draw a test verdict. The test generation and execution algorithm is implemented as an extension to UPPAAL and experiments carried out to examine the correctness and performance of the tool. The experiment results are promising
    • …
    corecore