39,307 research outputs found

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    The survey of the Basilica di Collemaggio in L’Aquila with a system of terrestrial imaging and most proven techniques

    Get PDF
    The proposed job concerns the evaluation of a series of surveys carried out in the context of a campaign of studies begun in 2015 with the objective of comparing the accuracies obtainable with the systems of terrestrial imaging, compared to unmanned aerial vehicle imaging and laser scanner survey. In particular, the authors want to test the applicability of a system of imaging rover (IR), an innovative terrestrial imaging system, that consists of a multi-camera with integrated global positioning system (GPS)/global navigation satellite system (GNSS) receiver, that is very recently released technique, and only a few literature references exist on the specific subject. In detail, the IR consists of a total of 12 calibrated cameras – seven “panorama” and five downward-looking – providing complete site documentation that can potentially be used to make photogrammetric measurements. The data acquired in this experimentation were then elaborated with various software packages in order to obtain point clouds and a three-dimensional model in different cases, and a comparison of the various results obtained was carried out. Following, the case study of the Basilica di Santa Maria di Collemaggio in L’Aquila is reported; Collemaggio is an UNESCO world heritage site; it was damaged during the seismic event of 2009, and its restoration is still in progress

    3D MODELING of A COMPLEX BUILDING: From MULTI-VIEW IMAGE FUSION to GOOGLE EARTH PUBLICATION

    Get PDF
    This paper presents a pipeline that aims at illustrating the procedure to realize a 3D model of a complex building integrating the UAV and terrestrial images and modifying the 3D model in order to publish to Google Earth in an interactive modality so as to provide better available models for visualization and use. The main steps of the procedure are the optimization of the UAV flight, the integration of the different UAV and ground floor images and the optimization of the model to be published to GE. The case study has been identified in a building, The Eremo di Santa Rosalia Convent in Sicily which hash more staggered elevations and located in the hills of the hinterland and of which, the online platform only indicate the position on Google Maps (GM) and Google Earth (GE) with a photo from above and a non-urban road whose GM path is not corresponding with the GE photo. The process highlights the integration of the models and showcases a workflow for the publication of the combined 3D model to the GE platform

    Close range mini Uavs photogrammetry for architecture survey

    Get PDF
    The survey of historical façades contains several bottlenecks, mainly related to the geometrical structure, the decorative framework, the presence of natural or artificial obstacles, the environment limitations. Urban context presents additional restrictions, binding by ground acquisition activity and leading to building data loss. The integration of TLS and close-range photogrammetry allows to go over such stuff, not overcoming the shadows effect due to the ground point of view. In the last year the massive use of UAVs in survey activity has permitted to enlarge survey capabilities, reaching a deeper knowledge in the architecture analysis. In the meanwhile, several behaviour rules have been introduced in different countries, regulating the UAVs use in different field, strongly restricting their application in urban areas. Recently very small and light platforms have been presented, which can partially overcome these rules restrictions, opening to very interesting future scenarios. This article presents the application of one of these very small RPAS (less than 300 g), equipped with a low-cost camera, in a close range photogrammetric survey of an historical building façade in Bologna (Italy). The suggested analysis tries to point out the system accuracy and details acquisition capacity. The final aim of the paper is to validate the application of this new platform in an architectonic survey pipeline, widening the future application of close-range photogrammetry in the architecture acquisition process

    Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images

    Get PDF
    We have developed a simple photogrammetric method to identify heterogeneous areas of irrigated olive groves and vineyard crops using a commercial multispectral camera mounted on an unmanned aerial vehicle (UAV). By comparing NDVI, GNDVI, SAVI, and NDRE vegetation indices, we find that the latter shows irrigation irregularities in an olive grove not discernible with the other indices. This may render the NDRE as particularly useful to identify growth inhomogeneities in crops. Given the fact that few satellite detectors are sensible in the red-edge (RE) band and none with the spatial resolution offered by UAVs, this finding has the potential of turning UAVs into a local farmer’s favourite aid tool.Peer ReviewedPostprint (published version

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Use of a UAV for Water Sampling to Assist Remote Sensing of Bacterial Flora in Freshwater Environments

    Get PDF
    Ground truth data collection in bodies of water traditionally relies on the use of watercraft and manual sampling. The transport and cost associated with the use of this type of equipment, as well as the time required to reach the site of collection, may all be significantly reduced by the use of small unmanned aerial vehicles (UAV) or drones. In this project we evaluate the implementation of a modified UAV with the ability to collect a small volume of surface water up to 400m offshore. The bacterial flora found in the water of several locations in the Lake Ontario-Rochester Embayment area is then entered into a multi-year database that attempts to correlate hyperspectral data obtained by the Landsat 8 Operational Land Imager with the isolated bacterial species. We found that water collection using a consumer grade UAV facilitated sampling efforts, saving time and providing easy access to otherwise difficult to reach collection sites
    corecore