86,559 research outputs found
Cellular-Enabled UAV Communication: Trajectory Optimization Under Connectivity Constraint
In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV)
communication system consisting of one UAV and multiple ground base stations
(GBSs). The UAV has a mission of flying from an initial location to a final
location, during which it needs to maintain reliable wireless connection with
the cellular network by associating with one of the GBSs at each time instant.
We aim to minimize the UAV mission completion time by optimizing its
trajectory, subject to a quality of connectivity constraint of the GBS-UAV link
specified by a minimum received signal-to-noise ratio (SNR) target, which needs
to be satisfied throughout the mission. This problem is non-convex and
difficult to be optimally solved. We first propose an effective approach to
check its feasibility based on graph connectivity verification. Then, by
examining the GBS-UAV association sequence during the UAV mission, we obtain
useful insights on the optimal UAV trajectory, based on which an efficient
algorithm is proposed to find an approximate solution to the trajectory
optimization problem by leveraging techniques in convex optimization and graph
theory. Numerical results show that our proposed trajectory design achieves
near-optimal performance.Comment: submitted for possible conference publicatio
UAV Air-to-Ground Channel Characterization for mmWave Systems
Communication at mmWave bands carries critical importance for 5G wireless
networks. In this paper, we study the characterization of mmWave air-to-ground
(AG) channels for unmanned aerial vehicle (UAV) communications. In particular,
we use ray tracing simulations using Remcom Wireless InSite software to study
the behavior of AG mmWave bands at two different frequencies: 28~GHz and
60~GHz. Received signal strength (RSS) and root mean square delay spread
(RMS-DS) of multipath components (MPCs) are analyzed for different UAV heights
considering four different environments: urban, suburban, rural, and over sea.
It is observed that the RSS mostly follows the two ray propagation model along
the UAV flight path for higher altitudes. This two ray propagation model is
affected by the presence of high rise scatterers in urban scenario. Moreover,
we present details of a universal serial radio peripheral (USRP) based channel
sounder that can be used for AG channel measurements for mmWave (60 GHz) UAV
communications.Comment: Comment: Accepted for 5G Millimeter-Wave Channel Measurement, Models,
and Systems workshop, VTC Fall 2017 Comment: Typo corrected in the x-axis of
Fig. 4 and Fig. 5 on page 3 and page
Study of a Flexible UAV Proprotor
This paper is concerned with the evaluation of design techniques, both for the propulsive performance and for the structural behavior of a composite flexible proprotor. A numerical model was developed using a combination of aerodynamic model based on Blade Element Momentum Theory (BEMT), and structural model based on anisotropic beam finite element, in order to evaluate the coupled structural and the aerodynamic characteristics of the deformable proprotor blade. The numerical model was then validated by means of static performance measurements and shape reconstruction from Laser Distance Sensor (LDS) outputs. From the validation results of both aerodynamic and structural model, it can be concluded that the numerical approach developed by the authors is valid as a reliable tool for designing and analyzing the UAV-sized proprotor made of composite material. The proposed experiment technique is also capable of providing a predictive and reliable data in blade geometry and performance for rotor modes
On the trade-off between electrical power consumption and flight performance in fixed-wing UAV autopilots
This paper sets out a study of the autopilot design for fixed wing Unmanned Aerial Vehicles (UAVs) taking into account the aircraft stability, as well as the power consumption as a function of the selected control strategy. To provide some generality to the outcomes of this study, construction of a reference small-UAV model, based on averaging the main aircraft defining parameters, is proposed. Using such a reference model of small, fixed-wing UAVs, different control strategies are assessed, especially with a view towards enlarging the controllers' sampling time. A beneficial consequence of this sample time enlargement is that the clock rate of the UAV autopilots may be proportionally reduced. This reduction in turn leads directly to decreased electrical power consumption. Such energy saving becomes proportionally relevant as the size and power of the UAV decrease, with benefits of lengthening battery life and, therefore, the flight endurance. Additionally, through the averaged model, which is derived from both published data and computations made from actual data captured from real UAVs, it is shown that behavior predictions beyond that of any particular UAV model may be extrapolated.Peer ReviewedPostprint (author's final draft
On The Continuous Coverage Problem for a Swarm of UAVs
Unmanned aerial vehicles (UAVs) can be used to provide wireless network and
remote surveillance coverage for disaster-affected areas. During such a
situation, the UAVs need to return periodically to a charging station for
recharging, due to their limited battery capacity. We study the problem of
minimizing the number of UAVs required for a continuous coverage of a given
area, given the recharging requirement. We prove that this problem is
NP-complete. Due to its intractability, we study partitioning the coverage
graph into cycles that start at the charging station. We first characterize the
minimum number of UAVs to cover such a cycle based on the charging time, the
traveling time, and the number of subareas to be covered by the cycle. Based on
this analysis, we then develop an efficient algorithm, the cycles with limited
energy algorithm. The straightforward method to continuously cover a given area
is to split it into N subareas and cover it by N cycles using N additional
UAVs. Our simulation results examine the importance of critical system
parameters: the energy capacity of the UAVs, the number of subareas in the
covered area, and the UAV charging and traveling times.We demonstrate that the
cycles with limited energy algorithm requires 69%-94% fewer additional UAVs
relative to the straightforward method, as the energy capacity of the UAVs is
increased, and 67%-71% fewer additional UAVs, as the number of subareas is
increased.Comment: 6 pages, 6 figure
- …
