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Abstract — This paper sets out a study of the autopilot design for 

fixed wing UAVs taking into account the aircraft stability, and also 
the power consumption as a function of the selected control 
strategy. To provide some generality to the outcomes of this study, 
construction of a reference small-UAV model, based on averaging 
the main aircraft defining parameters, is proposed. Using such a 
reference model of small, fixed-wing UAVs, different control 
strategies are assessed especially with a view towards enlarging the 
controllers’ sampling time. A beneficial consequence of this 
sample time enlargement is that the clock rate of the UAV 
autopilots may be proportionally reduced. This reduction in turn 
leads directly to decreased electrical power consumption. Such 
energy saving becomes proportionally relevant as the size and 
power of the UAV decreases, with benefits of lengthening battery 
life and, therefore, the flight endurance. Additionally, through the 
averaged model, derived from both published data and 
computations made from actual data captured from real UAVs, it 
is shown that behavior predictions beyond that of any particular 
UAV model may be extrapolated. 
 
   Index Terms — Unmanned aerial vehicles, aircraft systems, 
control systems, autopilots, CMOS electronics, power 
consumption.  

 
I. INTRODUCTION 

The growing interest in Unmanned Aerial Vehicles (UAVs) 
has been steered by political, economic, security and other such 
drivers. Compared to conventionally piloted aircraft, small-
medium size UAVs are significantly cheaper, easier to exploit, 
benefit more readily from technological developments, and 
show better maneuverability in some complicated or unsafe 
scenarios. For some specific telecommunication systems 
applications, such as ad hoc special purpose applications, 
UAVs with large wing spans [1] or even those based on 
balloons [2] offer some advantages over conventional solutions 
such as GEO, MEO or LEO satellites. Moving beyond initial 
military and security applications (e.g., border reconnaissance, 
surveillance operations, natural disaster support infrastructure), 
UAVs are playing a valuable, growing and pervasive role in an 
ever widening, evolving and diverse range of data collection 
applications in many spheres of civil life.  

While there is no agreed or unique classification of UAVs, 

operational range can be classifying attribute. NATO’s Joint 
Capability Group on UAV has made a classification ranging 
from micro UAVs (below 5 km) to High Altitude Long 
Endurance (HALE) UAVs, which have more than one day of 
autonomy and operate at altitudes above 14 km. In this paper, 
we will use the term ‘small UAVs’ in a wide sense, including 
UAVs with ranges of up to 50 km. 

UAV nomenclature often relates to the kind of operation. 
Unmanned Aircraft Systems (UAS) is an International Civil 
Aviation Organization (ICAO) term that refers to a wider 
concept than just UAVs, and includes remote control supported 
by ground stations. Unmanned free balloons are also classified 
as UAS in ICAO documents. Another name is Remotely Piloted 
Aircraft Systems (RPAS). UAVs of another type are small 
aircraft which can be rapidly deployed without the need for an 
airstrip, thus providing early rapid response in search and 
rescue missions.  

Different technological factors have contributed to boosting 
the usage of unmanned aircraft. The most prominent are the 
developments of high density batteries, long range radio 
devices with improved power efficiency, cheaper airframes, 
and powerful motors, as well as ever improving ‘cost-size-
performance’ figures of merit of the microelectronics that 
constitute the core of the avionics subsystem. 

Navigation which refers to the aircraft location and trajectory 
may be more or less complicated according to the flying 
scenario. Factors include segregated or non-segregated 
airspace, cooperative UAV formation [3] or not, constant or 
changing path, etc. At a lower level, the role of the autopilot is 
to apply suitable control actions dynamically to assure a correct 
navigation along the desired waypoints. The autopilot entities 
are the major and core component of the UAV avionics. They 
are composed of a host of computing and sensing subsystems. 
These include the onboard computer; micro inertial guidance 
utilities comprising gyros, acceleration and magnetic sensors; a 
GPS receiver; battery monitoring and power distribution board; 
and an onboard camera [4]. Functionally, the autopilot is the 
closed-loop control system in charge of the longitudinal and 
lateral controls for controlling the altitude, forward and vertical 
speeds, the pitch attitude, and for maintaining aircraft direction 
and stability within a bank angle. The autopilot algorithm 
continuously generates commands to the main control surfaces 
(ailerons, elevator and rudder) and to the throttle to control the 
motor speed. Small UAVs may not have all these control 
possibilities. 

Autopilots have different operating modes, depending on the 
degree of autonomy to control the flight surfaces. The set-points 
to the control surfaces servos may be autonomously computed 
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(on board) or relayed through a radio-control link from a 
Ground Control Station (GCS) [5,6]. The normal operation is 
to operate autonomously when the objective is just to move the 
flight surfaces to control the aircraft dynamics between 
waypoints, these being obtained through a radio link. However, 
when the waypoints are spaced or when the UAV is faced with 
unexpected situations, then the autopilot may be required to 
autonomously compute extra waypoints. It does this in the 
former situation to reduce power consumption in the onboard 
radio equipment, as well as to release bandwidth in the radio 
channel for payload applications; and in the latter, to create 
alternative routes to handle or avoid unexpected disturbances or 
encounters in the nominal path. It is these kinds of autonomous 
autopilot control mode [4,5,7] that are considered in this paper. 

The UAV power consumption depends on a variety of factors 
but mainly on wing loadings, weight and desired performance. 
A small electrical UAV typically needs around 20 to 200 
watts/kg to fly. For example, an electrical UAV with 5 m of 
wingspan can need a power of 100 watts for a Take-Off Weight 
(TOW) of 4.5 kg. A value of 200 to 300 watts/kg is suited to 
heavier or higher performance UAVs, growing to 1.5 kW for 
300 kg TOW. HALE UAVs with their large wing spans of 15 
to 50 m require some tens of kW of power. 

In [8], some UAV power requirements are presented. For a 
lightweight UAV, the power requirement for up to 2 hours of 
endurance is typically 40 watts. This power demand can be met 
by using photovoltaic cells or lithium polymer batteries. 

Motors are the main power consuming devices among the 
entire set of UAV subsystems. The other power hungry 
subsystems are the power amplifier in the radio transmitter 
(only for enlarged communication ranges) and the autopilot. 
The power consumption of the autopilot, typically ranging from 
1.5 to 5 watts, while negligible in large aircraft, becomes as 
relevant as the UAV size shrinks [4]. For instance, in reduced 
endurance small UAVs the autopilot accounts for up to 5% of 
the whole aircraft power, growing to 10% in lightweight UAVs. 
Hence, the growing interest in finding battery power 
consumption reduction measures.  

Integrated autopilots for small UAVs are readily available in 
the market at reasonable prices. Usually they include RF 
communications, navigation sensors and GPS connections. The 
autopilot hardware is based on devices usually made in CMOS 
technology, such as Digital Signal Processors (DSP) or Digital 
Signal Controllers (DSC) running at clock frequencies of tens 
of MHz [5,8] and so executing tens of millions of instructions 
per second (MIPS). The reduction of the clock frequency 
shrinks the autopilot power consumption, because of the strong 
power consumption dependence of CMOS devices to the 
switching frequency of the internal transistors. Typically the 
data taken from telemetry and from the internal GPS receiver is 
updated at a frequency of 5 Hz, while the processing frequency 
of the control algorithms (sampling frequency of the digital 
controllers) ranges from 20 to 200 Hz [4,5,9,10,11]. 

The elementary autopilot control facilitates a manual override 
by a remote pilot. While classical PID is the most common 
autopilot control strategy encountered for automatic control of 
the flight surfaces, more advanced strategies, such as neural 
networks, fuzzy logic, adaptive structures, LQR or H-∞ have 
been proposed. There are a variety of trade-offs among these 
strategies. For instance, some have reduced accuracy 

requirements of the dynamical model of the aircraft in order to 
compute good controller parameters, while others have better 
responses (stability and/or precision) in face of external 
disturbances but this at the cost of detailed accurate aircraft 
design models. Additional trade-off elements are the control 
algorithm sampling time and the necessity of internal control 
loops. The sampling time directly affects the sampling 
frequency in the DSP device. As indicated, device power 
consumption is proportional to the clock rate. Also, the use of 
additional inner control loops requires the use of more variables 
(more sensors), with the usual redundancy. 

In the study presented here different autopilot control 
strategies are evaluated with respect to their sensitivity to 
increasing the sampling period. To our knowledge there is no 
literature addressing this sensitivity, and consequently, the 
quantitative advantages or disadvantages of a given control 
algorithm in terms of power consumption. The control 
strategies considered here are PID, LQG/LQR –the strategy 
most employed in recent research papers-, and an advanced 
strategy based on a direct adaptive controller following a model 
reference structure (MRAS). Results are assessed by 
considering both the flight quality and the practical 
implementation needs.  

Normally, in published research work showing the benefits of 
a selected control law, results are underpinned by simulations 
carried out using a particular UAV model. Given the variety of 
UAVs, this particularity of the simulation results presents 
difficulties when it comes to making a comparative analysis of 
the relative advantages and disadvantages among the different 
control laws. As a way of dealing with this, we employ what we 
refer to as an ‘averaged model’ of reduced size fixed-wing 
UAVs. This model is extracted from actual UAVs with 
wingspans lower than 6m, but not including micro UAVs. To 
elaborate this ‘averaged model’ we use the UAV models and 
their parameters directly obtained from the published technical 
papers, data sheets and such like documentation sources. For 
those UAVs for which published dynamic models are 
unavailable, we have used the USAF Digital Datcom 
(DATCOM) software [12,13] to compute the parameters of 
actual UAVs, i.e., from actual UAVs structural data. For the 
sake of simplicity, this work is based on longitudinal models. 
This approach is sufficient for our purpose of assessing the 
control law algorithms’ dependency on the sampling period. 
Depending on the control algorithm under consideration, the 
models are developed in the state-space or as a simple SISO 
transfer function. 

In the presented study it will be shown the little robustness of 
the LQR in front of sampling period enlargements, as well as 
the capability of both the PID and the proposed MRAS 
regulator to reduce power consumption between 5 and 10 times, 
keeping a right dynamics in precision and an acceptable setting 
time (lower than 10s in the adaptive strategy). 

II.   MODELS OF FIXED-WING UAVS 

The primary step for designing and assessing control 
strategies is to have a suitable model. However, for a general 
study of such strategies, there is a risk in using a model aligned 
too closely to a particular UAV, in that results and conclusions 
will in fact lack generality. Even just considering fixed and 
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rigid wing UAVs, there can be quite a variation, e.g., relevant 
differences in the airframe: wingspan, chord, simple or double 
rudder, V-tail or not, tailboom assemblies, location of motors, 
fuel or electric propulsion, as well as differences in the 
materials: metallic, plastic, carbon fiber, etc. Hence our 
proposition above of an ‘averaged model’ which we made using 
both data from two sources as indicated above. We elaborate on 
this in the follow two subsections. 

A.  Models from Research Papers 

In the literature proposing autopilot control strategies, 
different models of UAVs may be found. These are usually 
presented in state-state format. The first drawback encountered, 
in seeking to make an averaged model from this data, is the 
diversity of state vectors (variables) considered in the different 
papers. This drawback would be easily be overcome if the 
objective were to elaborate a classical transfer function (SISO 
model) because the transformation from the state-state 
representation to the transfer function is quite trivial. However, 
if the objective is to obtain a generalized state-state model, then 
solutions to this problem are not easy, are not direct and, 
besides, most of the techniques to modify or reduce models 
(e.g., SVD) only preserve some characteristics of the original 
system (e.g., stability). In our study, we wish to assess and 
compare, for the same aircraft, some control strategies that only 
need the transfer function model and other strategies that 
require a model in the space-state (LQG/LQR). Hence it is 
necessary to limit the use of published models to those sharing 
the same state variables. A consequence of such restrictions is 
the reduction of the number of UAVs to be used in the averaged 
model. The aircraft considered and selected have wingspans 
ranging from 2.4 to 5.8 meters and show only slight variations 
in their geometry. For one of them [14], the model has been 
made with three different techniques (analytical, grey-box 
method and black box method), with remarkable differences in 
its parameters among these techniques. For another two models 
[15,16], only three of the four considered variables agree. These 
four variables are longitudinal velocity, u; vertical velocity, w; 
pitch rate ρ; and the pitch angle, θ. 

B.  DATCOM based models 

   The longitudinal aircraft model from the classic book of J. H. 
Blakelock [17] is adequate for use with the USAF Digital 
Datcom (DATCOM) software [12,13]. This model is based on 
the aircraft rigid body equations, using the three degree-of-
freedom longitudinal equations which, along with the stability 
derivatives, provide the transfer functions of the aircraft for an 
elevator input [17]. In the used aircraft axis system the center of 
coordinates is located at the center of gravity of the aircraft (they 
may be related with the earth axis –inertial frame- by means of 
the Euler angles). 
   As usual, we make the following assumptions: i) the mass of 
the aircraft remains constant, ii) the aircraft is a rigid body, iii) 
the earth is an inertial reference, iv) the perturbations from 
equilibrium are small, and v) the flow is quasi-steady. 
   The model considers three variables: the speed in the 
longitudinal direction (u), the angle of attack (α) and the pitch 
angle (θ). By applying dynamic principles to the plane, with the 
usual assumptions of constant mass and atmosphere and aircraft 
symmetries, after balancing steady-state aerodynamic forces 

and moments in the aircraft body, expanded in terms of the 
changes in them and supposing small displacements (small-
angle approximations on the transformation from the earth axis 
to the aircraft axis), the classical [17] longitudinal equations of 
motion can be obtained in the s-domain (Laplace transform): 
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The aerodynamic parameters used along this paper are 
tabulated in Table I 
 

TABLE I 
TABULATED AERODYNAMIC PARAMETERS 

u longitudinal velocity q  dynamic pressure 

U 
absolute velocity in the 
longitudinal direction 

c  
mean aerodynamic chord 
(MAC) of the wing, 

w vertical velocity IY  
body inertia around y axis 
(lateral axis) 

α angle of attack δe elevator displacement 

θ pitch angle 

Cx, 
Cw,  
Cz  
Cm  

control and stability 
derivatives.  ሺvariation࢛࢞࡯
of thrust with u), ࢝࡯ 
(gravity), ࢛ࢠ࡯ (variation of 
normal force with u) 

ρ ൌ θሶ  pitch rate m mass of the aircraft 
S  wing surface h   altitude 

 
To represent the entry of the system (excitation), the elevator 

displacement δe has been added. The derivatives Cx, Cw, Cz 
and Cm may be computed by using the DATCOM software.  

In order to simplify the application of these equations to 
design some control techniques, they are converted to state-
space form [17,18]. To do it, the pitch rate θሶ  has to be included 
as additional variable, ρ ൌ θሶ 	. 
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where B is a 4x1 matrix and A is a 4x4 matrix. 
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    Four UAVs have been modeled by means of DATCOM, cf. 
Fig. 1. They are: ALO [19], Siva [19], Megastar, [20,21] and 
Shadow MK-1 [21].  ALO (span: 3.84 m and maximum take-
off weight, MTOW: 55 kg) and SIVA (span: 5.81 m, maximum 
weight: 300 kg) are UAVs developed by the Spanish National 
Institute for Aerospace Technology. Megastar 1.50 ARF, 
manufactured by Proteus, has a wingspan of 2.4 m and a weight 
of 5.9 kg (no MTOW data provided), while Shadow MK-1 is 
an experimental prototype developed by the ICARUS team 
[22], with 5.2 meters of wingspan, and allowing a MTOW of 
90 kg (dry weigh of 55 kg). 
 

 

 
 

Fig. 1   Some considered UAVs and their DATCOM models: ALO (a), Siva 
(b), Megastar (c), Shadow (d) and Global Hawk (e). 

 
    
 
 
 
 
 

 
 
 
 
 
 
 
Initially, two large fixed-winged UAVs were considered for 
incorporation into the ‘averaged model’. These were the Global 
Hawk [23], with a wingspan of 35.3 m and the scale-	
sized technological demonstrator (24 m wingspan) of the 
Heliplat prototype [24]. However, the differences among the 
parameters of both models compared to those of the lower 
wingspan models were too significant, and too unbalancing for 
the generality of the averaged model; we decided to exclude 
them.  
 

III.   AVERAGED MODEL 
 
Nine different fixed-wings UAVs models have been used, 

five from research publications and four elaborated with 
DATCOM. Because there are differences in the variables used 
for defining the models, cf. Table II, it is not possible to 
compute an average of the state-space models by a simply 
parameter averaging process. 

 
TABLE II 

FIXED-WING AIRCRAFT MODELS WITH THEIR CORRESPONDING 

VARIABLES (DESCRIBED AS INDICATED ABOVE) 
 

UAV model 
Variables of the 

model 

BPPT Wulung UAV  (analytical) [14] {u,w,ρ,θ} 

BPPT Wulung UAV  (grey-box) [14] {u,w,ρ,θ} 

BPPT Wulung UAV  (black-box) [14] {u,w,ρ,θ} 

Conventional model 1 [15] {u,ρ,θ,α} 

Conventional model 2 [16] {u,ρ,θ,h} 

ALO UAV (DATCOM) {u,α,θ,ρ} 

Siva UAV (DATCOM) {u,α,θ,ρ} 

Megastar UAV (DATCOM) {u,α,θ,ρ} 

Shadow UAV (DATCOM) {u,α,θ,ρ} 

 
Rather, an averaged model may be found by averaging the 

individual model impulse responses, described by the pole-zero 
(p-z) locations in the s-domain. The p-z locations of the 
individual models (real and imaginary terms) are averaged. 

Once the locations for the averaged residuals are known, the 
next step is to solve the inverse problem to obtain the model 
parameters - control and stability derivatives of equations (1), 
(2) and (3) – by means of which the poles and zeroes may be 
placed in the target locations. Special care needs to be taken on 
the dominant poles (closer to the imaginary axis). These are the 
slower ones, describing the phugoid motion. The dominant 
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poles for the averaged model are located at ݏ ൌ െ0.02474 േ
j	0.3191. These poles are also critical in other works which 
assess the accomplishment of the Reduced Vertical Separation 
Minimum (RVSM), i.e., assess the ICAO conditions for UAV 
operation in a non-segregated air-space environment.  

After a sensitivity study, we have realized that the poles and 
zeroes of the transfer function are particularly sensitive to the 
terms  

൉࢛࢓

ࢗ൉ࡿ
  and  ࢛࢞࡯ሺi.e., variation of drag and thrust with u). 

At a secondary level, the transfer function is sensitive to ࢝࡯ 
(gravity), ࢛ࢠ࡯ (variation of normal force with u) and 

ࢉ

૛൉ࢁ
. The 

remaining parameters show little sensitivity to modifications to 
the dominant p-z locations. They only affect the residuals 
related to the fast components of the response. The resulting 
averaged model equations from DATCOM models are:  
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Merging this model with the ones obtained from the 

published papers yields the final version of the averaged 
model: 

 

൮

ሶݑ
ሶߙ
ሶߠ
ሶߩ

൲ ൌ ቎

െ0.0688 0.0283 െ03098 0
െ0.4003 െ2.4955 0 0.9819

0
0.2373

0
െ13.5921

0 1
0 െ1.9673

቏ ൉ ቌ

ݑ
ߙ
ߠ
ߩ

ቍ ൅ 

 

൅	ቌ

0
െ0.1298

0
െ14.2371

ቍ ൉  (8)                                                           ݁ߜ	

 
For the LQR controller, the performance index is defined as 
usual [18]:  

ܬ ൌ න ሺ்ݔ ൉ ܳ ൉ ݔ ൅ ்ݑ ൉ ܴ ൉ ݐ݀	ሻݑ
௧௙

଴
 

 
(9) 

 
 
 

where the weighting matrixes Q and R are: 
 

ܳ	 ൌ

ۏ
ێ
ێ
ۍ
௠௔௫ݑ/1 0 	 0 											0			

0 ௠௔௫ߙ/1 0									 		0
0
0

0
0

௠௔௫ߠ/1 0
						 0 ے	ሶ௠௔௫ߠ/1							

ۑ
ۑ
ې
 

(10) 
 
 

ܴ ൌ  ௘௠௔௫൧ (11)ߜ/1ൣ
 

 
The adaptive controller follows the MRAS model [29] shown 

in the schematics in Fig. 2 and Fig. 3. 
 
 

 

 
 

Fig. 2   Direct adaptive control based on a model reference structure. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3   Direct adaptive control law 
 
 

And the control law is [25,26]: 
 

,ሺ݁ݓ    ሻݐ ൌ ׬	 ଵ݂	ሺ݁, ,ݐ ߬ሻ݀߬ ൅ ଶ݂ሺ݁, ߬ሻ
௧
଴                        (12) 

 
ଵ݂		ሺ݁, ߬ሻ ൌ ݇ଵ	ݔሺݐሻ	݁ሺݐሻ ;  ଶ݂		ሺߦ, ߬ሻ ൌ ݇ଶ	; 			݇ଵ, ݇ଶ ൐ 0 

 
where f1 is related to the system precision and f2 to the velocity 
(settling time of the transient response).  
  The adaptive controller Matlab/Simulink simulation model is 
shown in Fig. 4.  
 

 
 
Fig. 4   Adaptive control simulation model for fixed-wing UAVs 
 

In order to also evaluate the robustness of the controllers, the 
simulations were made for both the obtained averaged model 
(whose step response can be seen in Fig. 5) and for the same 
model with a number of parameters under disturbance (Fig.5).  

For sampling periods (Ts) up to 1 s, the operational 
performance of all three controllers was shown to be adequate. 
Fig. 6 shows the results of the three controllers (pitch angle 
variation) for Ts = 1 s. Even with the best empirical adjustment, 
PID is the slowest to reach the right steady-state angle. However 
in its favor, and in contrast with LQR which is the quickest, it 
does not require a detailed model. However, the adaptive 
controller competes as the best option as it does not need very 
accurate models and so it represents a good compromise 

+
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between the quality of the response and the required level of 
model accuracy. 

 
Fig. 5   Step response of the averaged model (solid line) and the disturbed model 
(dashed line)  

 
Fig. 6   Comparison of step responses for Ts = 1 s (pitch angle)  
 

Considering responses to UAV disturbances, as can be seen 
in Fig 7, LQR fails to compensate for these (leaves the UAV 
with a significant steady state position error). Conversely, the 
responses of the PID controller and the MRAS controller, in 
successfully minimizing the final position error, are good; the 
former, due especially to its integrative action and, the latter, 
because of its adaptive behavior. 

 
Fig. 7  Step responses of the disturbed aircraft for Ts = 1 s  

 
As a first attempt to investigate the potential to reduce the 

battery power consumption, Ts was enlarged to 4 s. The PID 
fails at this sampling period. Its settling time is increased by up 
to 10 minutes, which is unacceptable in practice. Both LQR and 
MRAS still work satisfactorily (Fig. 8). In this study for both 
controllers the Ts enlargement is not applied as a parametric 
disturbance. Rather both have been redesigned considering the 
new sampling period. 

Anyway, LQR continues to fail to compensate the dynamics 
when the UAV is disturbed, while the adaptive controller, it 
continues to perform well, minimizing the final position error 
(Fig. 9). 

 
Fig. 8   Optimal and adaptive controllers responses for Ts = 4s  

 
Fig. 9   Disturbed UAV responses for Ts = 4s (adaptive and optimal controllers)  
 

Finally, the parameters of both LQR and the MRAS 
controllers have been computed for extreme sampling times in 
order to assess their robustness. MRAS has an acceptable 
behavior up to Ts = 10 s (Fig.10), while the LQR accepts 
redesigns up to 15 s, even though with a low flight quality, i.e., 
with an excessively underdamped response, Fig. 11. 

IV.  CMOS POWER CONSUMPTION 

Current autopilot technology is based on CMOS technology 
[9]. The power consumption of a CMOS device can be 
estimated [27]: 

 

஼ܲ ൌ ௣ௗܥ ൉ ௖ܸ௖
ଶ ൉ ௜݂ ൉ ௦ܰ௪ (13) 

 
where PC is the power consumption, Cpd the dynamic power-
dissipation capacitance, VCC the supply voltage, fi the switching 
frequency and Nsw the number of switching bits.  

Among other factors, the switching frequency depends on the 
sampling time required by the UAV’s digital control strategy. 
Hence, and as indicated earlier, by enlarging this time the 
processor workload and the power consumption will decrease 
and, as per (13), will do so linearly with the sampling period 
enlargement. 

In the simulation studies shown in previous section, the 
capability of the different control strategies to support large 
sampling periods has been assessed. The PID controller has 
some advantages. It does not require a detailed model of the 
aircraft to be tuned, and its robustness in the face of UAV 
disturbances (e.g., variations in lift or drag) is better than the 
LQR. However with the PID sampling time being reduced, to 
save power, results from the averaged model show that for 
values higher than 2 s (0.5 Hz) leads to large settling times, 
some minutes, and if too high, instability results.   
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Fig. 10   Adaptive controller response for Ts = 10 s.  
 

 
Fig. 11   Optimal (LQR) response for Ts = 15 s.  

 
     On the assumptions that the UAV model is sufficiently 
detailed and that the flight is not too perturbed (i.e., aircraft 
derivatives are constant), then the LQR is the best controller. In 
this scenarios where these conditions are satisfied, the LQR 
performance is best when using large sampling periods, and 
hence has the potential to yielding best percentage power 
consumption reduction. However as such scenarios are 
unrealistic in practice, relying on a direct use of LQR is risky 
and unadvisable. Further, LQR controllers are based in inner 
control loops, with a requirement for additional transducers, 
there is a consequent cost increment and safety reduction, e.g., 
a reliability dependency of a larger set of transducers.  

  Finally, the robustness of adaptive control technique 
(MRAS) allows enlarged sampling times, not much lower than 
what is possible using LQR. Also it has performed well in the 
presence of flight disturbances. In the trade-off balance between 
power consumption and flight safety it can be considered to 
yield the best performance. Notably, its power consumption can 
be reduced in a factor ranging from 5 to 10 over that of the 
popular PID. Compared to a typical PID based UAV autopilot, 
working at sampling periods larger than 20 Hz, the savings 
amount to this 1.4 to 4.5 watts; that is up to almost 10% of the 
total power consumed in a light UAV (i.e., one lower than 1 
Kg).  

In Table III some main results are compared, using as 
reference a 4 watts commercial autopilot working at 100 Hz, 
with the PID algorithm. The selected sampling times in the table 
are the ones producing angle errors lower than 2% and settling 
times faster than 30 s.  

The LQR power consumption benefit is not reported here as, 
for it, pitch angle precision is sacrificed when Ts is enlarged; 
e.g., even with a value of Ts= 0.0024 s, the angle error is 5%. 
Position errors are compared in Fig. 12. 

  
TABLE     III 

SAMPLING TIMES AND POWER SAVINGS FOR EACH CONTROL STRATEGY 

 CONTROL 
STRATEGY 

SAMPLING 
TIME (TS) 

POWER 
REDUCTION 

RESULTING 
POWER 
(FROM A 

REFEFRENCE 
OF 4 WATTS) 

Optimal 
control 

0.0024 s (416 Hz) No reduction 
Increased to 

16.6 W 
PID control 0.0142 s (70 Hz) 29.6 % 2.8 W 

Adaptive 
control 

1 s (1 Hz) 
0.65 s (1.5 Hz) 

99 % 
98.4 % 

0.04 W 
0.062 W 

     
 

 

Fig.  12   Relative error vs. sampling time for the three control techniques 

 
V. CONCLUSION 

 
A study of digital control strategy designs for autopilots in small 
fixed wing UAVs with a particular focus on the consequences 
of particular designs on system stability and power consumption 
efficiency, simultaneously, has been presented. 
    To create a reasonable comparison framework, the 
computation of an ‘averaged model’ of reduced size and fixed-
wing UAVs was proposed and employed in order to study and 
comparatively evaluate stability and power consumption 
sensitivities to reductions in the sampling period. The 
proposition of such an ‘averaged model’ was deemed justified 
due to the variety of particular UAV linked to different control 
strategies and, in many cases, in the published literature, the 
absence of sufficient UAV design detail. 
     This ‘average model’ was obtained by merging compatible 
published models with others constructed from actual UAVs 
using the DATCOM software. An advantage of such a model is 
its independence of a particular UAV airframe. Hence the study 
results presented here have the advantage of some generality 
and thus usefulness as a first stage control algorithm evaluation 
in design studies when considering what to use for the autopilot 
in an actual UAV. 
     Among the studied strategies, PID and adaptive MRAS 
strategies were found to be the most independent of the UAV 
model details. In practice, nonetheless, this fact is complicated 
because the stability models are just an approximation and 
relying on the supposition of a t-invariant model is not too 
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realistic in a context of weight variations, air pressures and 
altitudes, winds, stall curves, etc.  

Considering both quality of flight and the enlargement of the 
sampling period, optimal LQR strategies are best. However they 
have poor robustness (lack of precision) when faced with 
disturbances. Besides, they need a complex space state model 
and internal loops, a fact which increases cost and reduces 
reliability.  

Comparing PID and adaptive MRAS, the advantage of the 
latter is the possibility of significant reduction of power 
consumption, by between 5 and 10 times, as well greater 
robustness in their toleration of flight disturbances. 

Our study considered the longitudinal dynamics of the 
aircraft. Following very similar lines, the assessment could be 
extended to the lateral dynamics, and our expectation is that this 
would yield similar qualitative conclusions about the control 
strategies. 
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