1,401 research outputs found

    On Coverage of Critical Nodes in UAV-Assisted Emergency Networks

    Get PDF
    Unmanned aerial vehicle (UAV)-assisted networks ensure agile and flexible solutions based on the inherent attributes of mobility and altitude adaptation. These features render them suitable for emergency search and rescue operations. Emergency networks (ENs) differ from conventional networks. They often encounter nodes with vital information, i.e., critical nodes (CNs). The efficacy of search and rescue operations highly depends on the eminent coverage of critical nodes to retrieve crucial data. In a UAV-assisted EN, the information delivery from these critical nodes can be ensured through quality-of-service (QoS) guarantees, such as capacity and age of information (AoI). In this work, optimized UAV placement for critical nodes in emergency networks is studied. Two different optimization problems, namely capacity maximization and age of information minimization, are formulated based on the nature of node criticality. Capacity maximization provides general QoS enhancement for critical nodes, whereas AoI is focused on nodes carrying critical information. Simulations carried out in this paper aim to find the optimal placement for each problem based on a two-step approach. At first, the disaster region is partitioned based on CNs’ aggregation. Reinforcement learning (RL) is then applied to observe optimal placement. Finally, network coverage over optimal UAV(s) placement is studied for two scenarios, i.e., network-centric and user-centric. In addition to providing coverage to critical nodes, the proposed scheme also ensures maximum coverage for all on-scene available devices (OSAs)

    Stochastic Geometry-based Trajectory Design for Multi-Purpose UAVs: Package and Data Delivery

    Full text link
    With the advancements achieved in drones' flexibility, low cost, and high efficiency, they obtain huge application opportunities in various industries, such as aerial delivery and future communication networks. However, the increasing transportation needs and expansion of network capacity demands for UAVs will cause aerial traffic conflicts in the future. To address this issue, in this paper, we explore the idea of multi-purpose UAVs, which act as aerial wireless communication data relays and means of aerial transportation simultaneously to deliver data and packages at the same time. While UAVs deliver the packages from warehouses to residential areas, we design their trajectories which enable them to collect data from multiple Internet of Things (IoT) clusters and forward the collected data to terrestrial base stations (TBSs). To select the serving nearby IoT clusters, UAVs rank them based on their priorities and distances. From the perspectives of data and package delivery, respectively, we propose two algorithms that design the optimal UAVs trajectory to maximize the transmitted data or minimize the round trip time. Specifically, we use tools from stochastic geometry to model the locations of IoT clusters and TBSs. Given the nature of random locations, the proposed algorithm applies to general cases. Our numerical results show that multi-purpose UAVs are practical and have great potential to enhance the energy/time-efficiency of future networks

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well

    A novel collaborative IoD-assisted VANET approach for coverage area maximization

    Get PDF
    Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial infrastructure is unreliable or unavailable. To fully exploit the drones' flexibility and superiority, we propose a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD, we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles in the target area. More importantly, the proposed approach provides sufficient interconnections between IoD nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity are achieved by IPSO's objective function for optimal IoD deployment at the same time. We carry out an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted (FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the optimal IoD positions throughout the time based on the vehicle's movements and achieves better coverage and better quality of the received signal by finding the most appropriate IoD position compared with NIoD and FIoD schemes. © 2013 IEEE

    UAV Based 5G Network: A Practical Survey Study

    Full text link
    Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks that could handle high-speed transmissions and enable wireless broadcasts. When compared to communications that rely on permanent infrastructure, UAVs offer a number of advantages, including flexible deployment, dependable line-of-sight (LoS) connection links, and more design degrees of freedom because of controlled mobility. Unmanned aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT) components have the potential to completely transform a variety of industries. UAVs may transfer massive volumes of data in real-time by utilizing the low latency and high-speed abilities of 5G networks, opening up a variety of applications like remote sensing, precision farming, and disaster response. This study of UAV communication with regard to 5G/B5G WLANs is presented in this research. The three UAV-assisted MEC network scenarios also include the specifics for the allocation of resources and optimization. We also concentrate on the case where a UAV does task computation in addition to serving as a MEC server to examine wind farm turbines. This paper covers the key implementation difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models, and coupled trajectory-computation performance optimization, in order to promote widespread implementations of UAV-assisted MEC in practice. The primary problem for 5G and beyond 5G (B5G) is delivering broadband access to various device kinds. Prior to discussing associated research issues faced by the developing integrated network design, we first provide a brief overview of the background information as well as the networks that integrate space, aviation, and land
    • …
    corecore