3 research outputs found

    development of a software to optimize and plan the acquisitions from uav and a first application in a post seismic environment

    Get PDF
    AbstractAn Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. UAVs allow close-range photogrammetric acquisitions potentially useful for building large-scale cartography and acquisitions of building geometry. This is particularly useful in emergency situations where major accessibility problems limit the possibility of using conventional surveys. Presently, however, flights of this class of UAV are planned based only on the pilot's experience and they often acquire three or more times the number of images needed. This is clearly a time-consuming and autonomy-reducing procedure, which is certainly detrimental when extensive surveys are needed. For this reason new software, to plan the UAV's survey will be illustrated

    Development of a software to plan UAVs stereoscopic flight: An application on post earthquake scenario in L'Aquila city

    Get PDF
    On April 6, 2009, an earthquake hit the historic center of L'Aquila city, hundreds of victims, thousands of collapses. During the post-emergency a continuous monitoring of all building is crucial in order to guarantee that each structure at least will not worsen its stability until the final reconstruction is completed. So detailed surveying of all building is performed using different geomatic techniques as total stations, land photogrammetry, and laser scanners. Even if all these techniques can perfectly respond to many crucial post hazard needs, there are still many monitoring that cannot be completely carried on with traditional techniques. For these reasons, in this work, the advantages of using multirotor UAVs will be illustrated; UAVs can be fully remote controlled and so the geometry of photogrammetric image acquisition can be imposed. For this task planning of flight is essential so a package was realized to obtain actual photogrammetric stereoscopic acquisitions. © 2013 Springer-Verlag Berlin Heidelberg
    corecore