2,461 research outputs found

    Tyrosine Metabolism

    Get PDF
    Inherited disorders of tyrosine catabolism have been identified at five of the six enzymatic steps. Under normal conditions tyrosine concentrations are regulated by its synthetic enzyme (phenylalanine hydroxylase) and especially the first catabolic enzyme (tyrosine aminotransferase). Acquired or inherited deficiency of the second catabolic enzyme (4-hydroxyphenylpyruvate dioxygenase) also results in hypertyrosinemia. Tyrosine is mainly degraded in the liver but to a minor extent also in the kidney. In tyrosinemia type I, the primary defect is in the last enzyme of the pathway, accumulation of toxic metabolites are seen, and the hypertyrosinemia results from secondary deficiency of 4-hydroxyphenylpyruvate dioxygenase, which also is found in severe liver disease in general and in the immature liver. Generally, there is no common phenotype to the different disorders of tyrosine degradation. The occurrence of corneal and skin lesions, as seen in tyrosinemia type II, is a direct effect of high tissue tyrosine. Cognitive impairment is common in tyrosinemia type II, probably common in type III, and increasingly reported in type I. The liver and kidney diseases of tyrosinemia type I are caused by accumulation of toxic metabolites (fumarylacetoacetate and its derivatives) and can be prevented by an inhibitor (nitisinone) of tyrosine degradation at the level of 4-hydroxyphenylpyruvate dioxygenase. Whether maleylacetoacetate hydrolase that essentially gives the same metabolic features as tyrosinemia type I results in clinical features is unclear. In alkaptonuria there is no increase in tyrosine level, and the degradation of tyrosine proceeds at a normal rate to produce homogentisate. Upon oxidation, homogentisate forms reactive intermediates and pigment, which is deposited in various tissues particularly in joints and connective tissue. In hawkinsinuria, a very rare condition, data suggest that an aberrant metabolism of 4-hydroxyphenylpyruvate in some cases may lead to failure to thrive, acidosis, and excretion of a characteristic metabolite pattern.</p

    Tyrosine Metabolism

    Get PDF
    Inherited disorders of tyrosine catabolism have been identified at five of the six enzymatic steps. Under normal conditions tyrosine concentrations are regulated by its synthetic enzyme (phenylalanine hydroxylase) and especially the first catabolic enzyme (tyrosine aminotransferase). Acquired or inherited deficiency of the second catabolic enzyme (4-hydroxyphenylpyruvate dioxygenase) also results in hypertyrosinemia. Tyrosine is mainly degraded in the liver but to a minor extent also in the kidney. In tyrosinemia type I, the primary defect is in the last enzyme of the pathway, accumulation of toxic metabolites are seen, and the hypertyrosinemia results from secondary deficiency of 4-hydroxyphenylpyruvate dioxygenase, which also is found in severe liver disease in general and in the immature liver. Generally, there is no common phenotype to the different disorders of tyrosine degradation. The occurrence of corneal and skin lesions, as seen in tyrosinemia type II, is a direct effect of high tissue tyrosine. Cognitive impairment is common in tyrosinemia type II, probably common in type III, and increasingly reported in type I. The liver and kidney diseases of tyrosinemia type I are caused by accumulation of toxic metabolites (fumarylacetoacetate and its derivatives) and can be prevented by an inhibitor (nitisinone) of tyrosine degradation at the level of 4-hydroxyphenylpyruvate dioxygenase. Whether maleylacetoacetate hydrolase that essentially gives the same metabolic features as tyrosinemia type I results in clinical features is unclear. In alkaptonuria there is no increase in tyrosine level, and the degradation of tyrosine proceeds at a normal rate to produce homogentisate. Upon oxidation, homogentisate forms reactive intermediates and pigment, which is deposited in various tissues particularly in joints and connective tissue. In hawkinsinuria, a very rare condition, data suggest that an aberrant metabolism of 4-hydroxyphenylpyruvate in some cases may lead to failure to thrive, acidosis, and excretion of a characteristic metabolite pattern.</p

    Factors concerned in tyrosine metabolism

    Get PDF

    Tyrosine metabolism of an acatalasemic patient and of the toxohor-mone treated mice

    Get PDF
    Tyrosine metabolism of toxohormone-treated mice and acatalasemic patient was not disturbed. These facts do not concur with the report of Zannoni and Bert who stated that catalase was an essential factor for the oxidation of p-hydroxyphenylpyruvic acid.</p

    An Enigmatic Color Change of Urine: Alkaptonuria: Alkaptonuria

    Get PDF
    Alkaptonuria is an exceedingly rare tyrosine metabolism disorder of autosomal recessiveinheritance. Only a few instances of it have been observed in Bangladeshi children. Here,we talk about a 2-year-old boy who had dark urine and was later found to have alkaptonuria
    • …
    corecore