35 research outputs found

    Verifying Parallel Loops with Separation Logic

    Get PDF
    This paper proposes a technique to specify and verify whether a loop can be parallelised. Our approach can be used as an additional step in a parallelising compiler to verify user annotations about loop dependences. Essentially, our technique requires each loop iteration to be specified with the locations it will read and write. From the loop iteration specifications, the loop (in)dependences can be derived. Moreover, the loop iteration specifications also reveal where synchronisation is needed in the parallelised program. The loop iteration specifications can be verified using permission-based separation logic.Comment: In Proceedings PLACES 2014, arXiv:1406.331

    Separation Logic for Small-step Cminor

    Get PDF
    Cminor is a mid-level imperative programming language; there are proved-correct optimizing compilers from C to Cminor and from Cminor to machine language. We have redesigned Cminor so that it is suitable for Hoare Logic reasoning and we have designed a Separation Logic for Cminor. In this paper, we give a small-step semantics (instead of the big-step of the proved-correct compiler) that is motivated by the need to support future concurrent extensions. We detail a machine-checked proof of soundness of our Separation Logic. This is the first large-scale machine-checked proof of a Separation Logic w.r.t. a small-step semantics. The work presented in this paper has been carried out in the Coq proof assistant. It is a first step towards an environment in which concurrent Cminor programs can be verified using Separation Logic and also compiled by a proved-correct compiler with formal end-to-end correctness guarantees.Comment: Version courte du rapport de recherche RR-613

    On the Use of Underspecified Data-Type Semantics for Type Safety in Low-Level Code

    Full text link
    In recent projects on operating-system verification, C and C++ data types are often formalized using a semantics that does not fully specify the precise byte encoding of objects. It is well-known that such an underspecified data-type semantics can be used to detect certain kinds of type errors. In general, however, underspecified data-type semantics are unsound: they assign well-defined meaning to programs that have undefined behavior according to the C and C++ language standards. A precise characterization of the type-correctness properties that can be enforced with underspecified data-type semantics is still missing. In this paper, we identify strengths and weaknesses of underspecified data-type semantics for ensuring type safety of low-level systems code. We prove sufficient conditions to detect certain classes of type errors and, finally, identify a trade-off between the complexity of underspecified data-type semantics and their type-checking capabilities.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness

    Verification of loop parallelisations

    Get PDF
    Writing correct parallel programs becomes more and more difficult as the complexity and heterogeneity of processors increase. This issue is addressed by parallelising compilers. Various compiler directives can be used to tell these compilers where to parallelise. This paper addresses the correctness of such compiler directives for loop parallelisation. Specifically, we propose a technique based on separation logic to verify whether a loop can be parallelised. Our approach requires each loop iteration to be specified with the locations that are read and written in this iteration. If the specifications are correct, they can be used to draw conclusions about loop (in)dependences. Moreover, they also reveal where synchronisation is needed in the parallelised program. The loop iteration specifications can be verified using permission-based separation logic and seamlessly integrate with functional behaviour specifications. We formally prove the correctness of our approach and we discuss automated tool support for our technique. Additionally, we also discuss how the loop iteration contracts can be compiled into specifications for the code coming out of the parallelising compiler

    High-level Proofs about Low-level Programs

    Get PDF
    Functional verification of low-level code requires abstractions over the memory model to be effective, since the number of side-conditions induced by byte-addressed memory is prohibitive even with modern automated reasoners. We propose a flexible solution to this challenge: assertions contain explicit memory layouts which carry the necessary side-conditions as invariants. The memory-related proof obligations arising during verification can then be solved using specialized automatic proof procedures. The remaining verification conditions about the content of data structures directly reflect a developer's understanding. The development is formalized in Isabelle/HOL
    corecore