16,552 research outputs found

    Type-safe evolution of spreadsheets

    Get PDF
    Lecture Notes in Computer Science Volume 6603, 2011Spreadsheets are notoriously error-prone. To help avoid the introduction of errors when changing spreadsheets, models that capture the structure and interdependencies of spreadsheets at a conceptual level have been proposed. Thus, spreadsheet evolution can be made safe within the confines of a model. As in any other model/instance setting, evolution may not only require changes at the instance level but also at the model level. When model changes are required, the safety of instance evolution can not be guarded by the model alone. We have designed an appropriate representation of spreadsheet models, including the fundamental notions of formulæand references. For these models and their instances, we have designed coupled transformation rules that cover specific spreadsheet evolution steps, such as the insertion of columns in all occurrences of a repeated block of cells. Each model-level transformation rule is coupled with instance level migration rules from the source to the target model and vice versa. These coupled rules can be composed to create compound transformations at the model level inducing compound transformations at the instance level. This approach guarantees safe evolution of spreadsheets even when models change.Supported by Fundac ao para a Ciencia e a Tecnologia, grant no. SFRH/BD/30231/2006. Supported by Fundac ao para a Ciencia e a Tecnologia, grant no. SFRH/BD/30215/2006. Work supported by the SSaaPP project, FCT contract no. PTDC/EIA-CCO/108613/200

    Embedding and evolution of spreadsheet models in spreadsheet systems

    Get PDF
    This paper describes the embedding of ClassSheet models in spreadsheet systems. ClassSheet models are wellknown and describe the business logic of spreadsheet data. We embed this domain specific model representation on the (general purpose) spreadsheet system it models. By defining such an embedding, we provide end users a model-driven engineering spreadsheet developing environment. End users can interact with both the model and the spreadsheet data in the same environment. Moreover, we use advanced techniques to evolve spreadsheets and models and to have them synchronized. In this paper we present our work on extending a widely used spreadsheet system with such a model-driven spreadsheet engineering environment

    Embedding, evolution, and validation of model-driven spreadsheets

    Get PDF
    This paper proposes and validates a model-driven software engineering technique for spreadsheets. The technique that we envision builds on the embedding of spreadsheet models under a widely used spreadsheet system. This means that we enable the creation and evolution of spreadsheet models under a spreadsheet system. More precisely, we embed ClassSheets, a visual language with a syntax similar to the one offered by common spreadsheets, that was created with the aim of specifying spreadsheets. Our embedding allows models and their conforming instances to be developed under the same environment. In practice, this convenient environment enhances evolution steps at the model level while the corresponding instance is automatically co-evolved.Finally,wehave designed and conducted an empirical study with human users in order to assess our technique in production environments. The results of this study are promising and suggest that productivity gains are realizable under our model-driven spreadsheet development setting.The authors of this paper would like to express their gratitude to Dr. Nuno Alpoim, CEO of Agere, for providing us and our study with a spreadsheet under usage in industry. This work is funded by ERDF-European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT-Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within projects FCOMP-01-0124-FEDER-020532 and FCOMP-01-0124-FEDER-010048. This work was also supported by Fundacao para a Ciencia e a Tecnologia with grants SFRH/BPD/73358/2010 and SFRH/ BPD/46987/2008

    Spreadsheet engineering

    Get PDF
    These tutorial notes present a methodology for spreadsheet engineering. First, we present data mining and database techniques to reason about spreadsheet data. These techniques are used to compute relationships between spreadsheet elements (cells/columns/rows). These relations are then used to infer a model defining the business logic of the spreadsheet. Such a model of a spreadsheet data is a visual domain specific language that we embed in a well-known spreadsheet system. The embedded model is the building block to define techniques for modeldriven spreadsheet development, where advanced techniques are used to guarantee the model-instance synchronization. In this model-driven environment, any user data update as to follow the the model-instance conformance relation, thus, guiding spreadsheet users to introduce correct data. Data refinement techniques are used to synchronize models and instances after users update/evolve the model. These notes brie y describe our model-driven spreadsheet environment, the MDSheet environment, that implements the presented methodology. To evaluate both proposed techniques and the MDSheet tool, we have conducted, in laboratory sessions, an empirical study with the summer school participants. The results of this study are presented in these notes

    On the Numerical Accuracy of Spreadsheets

    Get PDF
    This paper discusses the numerical precision of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo) running on two hardware platforms (i386 and amd64) and on three operating systems (Windows Vista, Ubuntu Intrepid and Mac OS Leopard). The methodology consists of checking the number of correct significant digits returned by each spreadsheet when computing the sample mean, standard deviation, first-order autocorrelation, F statistic in ANOVA tests, linear and nonlinear regression and distribution functions. A discussion about the algorithms for pseudorandom number generation provided by these platforms is also conducted. We conclude that there is no safe choice among the spreadsheets here assessed: they all fail in nonlinear regression and they are not suited for Monte Carlo experiments.

    MDSheet: a framework for model-driven spreadsheet engineering

    Get PDF
    In this paper, we present MDSHEET, a framework for the embedding, evolution and inference of spreadsheet models. This framework offers a model-driven software development mechanism for spreadsheet users

    Model-driven spreadsheets in a multi-user environment

    Get PDF
    Spreadsheets are widely used by non-professional programmers, the so-called end-users, to perform simple calculations, but also by professional programmers in large software organizations, where spreadsheets are used to collect information from different systems, to transform data coming from one system to the format required by another, or to present data in human-friendly form.(undefined
    • …
    corecore