
MDSheet: A Framework for Model-driven Spreadsheet Engineering

Jácome Cunha∗, João Paulo Fernandes∗† Jorge Mendes∗, João Saraiva∗
∗Departamento de Informática, Universidade do Minho, Portugal

{jacome,jpaulo,jorgemendes,jas}@di.uminho.pt
†Departamento de Engenharia Informática, Universidade do Porto, Portugal

Abstract—In this paper, we present MDSHEET, a framework
for the embedding, evolution and inference of spreadsheet
models. This framework offers a model-driven software de-
velopment mechanism for spreadsheet users.

Keywords-Spreadsheets, Model-Driven Engineering, Soft-
ware Evolution, Embedded DSLs, Model Inference

I. INTRODUCTION

Spreadsheets are widely used by non-professional pro-
grammers, the so-called end users, to develop business
applications. Spreadsheet systems offer end users a high
level of flexibility, making it easier to get started working
with them. This freedom, however, comes with a price:
spreadsheets are error prone as shown by numerous studies
which report that up to 90% of real-world spreadsheets
contain errors [1].

As programming systems, spreadsheets lack the support
provided by modern programming languages/environments,
like for example, higher-level abstractions and powerful
type and modular systems. As a result, they are prone to
errors. In order to improve end-users productivity, several
techniques have been proposed, which guide end users to
safely and correctly edit spreadsheets, like, for example, the
use of spreadsheet templates [2], ClassSheets [3], [4], and
the inclusion of visual objects to provide editing assistance
in spreadsheets. All these approaches propose a form of end
user model-driven software development: a spreadsheet busi-
ness model is defined, from which a customized spreadsheet
application is then generated guaranteeing the consistency of
the spreadsheet data with the underlying model.

In this paper, we present MDSHEET, a unifying frame-
work where we have integrated the following modelling,
manipulation and co-evolution spreadsheet techniques:

• Embedding of ClassSheet models: ClassSheets are a
powerful and widely used modelling language to define
the business logic of a spreadsheet. MDSHEET em-
beds this modelling language in a spreadsheet system,
providing a coherent environment for model driven
spreadsheet engineering, as proposed in [5].

• Co-evolution of ClassSheets and instances: Like any
other software artifact, spreadsheets evolve over time.
MDSHEET uses a formal setting where the co-evolution
of the embedded ClassSheet model and the spreadsheet
instance is performed [6].

• Inference of ClassSheets: Being one of the most used
programming languages, there are huge amounts of
legacy spreadsheets. In order to provide a MDE envi-
ronment for such legacy spreadsheets, we have imple-
mented in MDSHEET the model inference technique
that we have proposed in [3].

In the next three Sections, each of this features is briefly
explained. The video that accompanies this paper is also
divided in these same parts.

II. EMBEDDING CLASSSHEETS IN SPREADSHEETS

ClassSheets [4] are a high-level, object-oriented formal-
ism to specify the business logic of spreadsheets. Class-
Sheets allow users to express business object structures
within a spreadsheet using concepts from the Unified Mod-
eling Language (UML). Using the ClassSheets model, it is
possible to define spreadsheet tables and to give them names,
to define labels for the table’s columns, to specify the types
of the values such columns may contain and also the way
the table expands (e.g., horizontally or vertically).

Besides a textual (and formal) definition, ClassSheets also
have a visual representation which very much resembles
spreadsheets themselves [7]. We have embedded such visual
model representation that mimics the well-known embed-
ding of a domain specific language in a general purpose
one. Like in such embeddings, we inherit all the powerful
features of the host language: in our case, the powerful
interactive interface offered by the (host) spreadsheet system.
This approach has two key advantages: first, we do not have
to build and maintain a complex interactive tool1. Second,
we provide ClassSheet model developers the programming
environment they are used to: a spreadsheet environment.
Furthermore, because the ClassSheet model and the spread-
sheet data are defined in the same environment, we now have
the power to ensure that the they are synchronized.

In order to illustrate our embedding we present in Figure 1
an embedded ClassSheet model (Figure 1b) and one of its
possible instances (Figure 1a).

The ClassSheet model represents pilots, where a pilot is
defined by an ID, Name and Flight hours. In row 3, it is
defined the type, and the default value, associated with each

1Like in the Gencel tool, developed by the authors that proposed
ClassSheets [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(a) Pilot table. (b) Pilot ClassSheet model.

Figure 1: Pilot example.

column: columns A and B hold strings (with an empty string
as default value), and column C holds integer values (with
0 as default). The fourth row of the model contains vertical
ellipses in all columns. This means that it is possible for
these columns to expand vertically: the tables that conform
to this model can have as many rows (entries) as needed.

Reusing the ClassSheet table we built before, we can
now model a table to register concrete flights by the airline
company, as shown in the right-hand side of Figure 2.

The colors in the model are used to distinguish the dif-
ferent entities represented, namely, pilots, planes, references
to pilots in the scheduling table, reference to planes in the
scheduling table and the flight scheduling itself.

A. Generating Spreadsheets from ClassSheet Models

Following the Gencel approach [8], the previously de-
scribed models can be translated into initial spreadsheets
together with tailor-made versions of update operations.
These operations are defined to perform the tasks of insertion
or deletion in such a way that the spreadsheet correctness
is always preserved. In fact, the spreadsheet in the left-
hand side of the Figure 2 was produced by our embedding
mechanism: the initial spreadsheet will contain the labels in
bold on the model, the initial formulas and buttons (grey
rows/columns labelled with elipsis) to add new vertical or
horizontal blocks of cells.

By using this MDE approach, the end user is guided in
the introduction of data that conforms to the underlying
model: for example, rows with type integer only accept
integer values. Another key feature of this approach is that
blocks of cells are automatically produced, for example, to
add a new flight, which is a relationship between a pilot
and a plane, the user must click on the button in row 6. The
system will then add a new row, also updating the necessary
formulas: it will update the formulas in cells E7, I7 and K7
to include the new added row. This mechanism prevents the
user from editing the spreadsheet without correctly updating
its formulas, and therefore from corrupting it.

III. CO-EVOLUTION OF MODELS AND INSTANCES

One key advantage of using a model-driven software
development process is the ability to interact both with the
model (a ClassSheet in our case) and its instance (i.e., the
spreadsheet data). This is usually a complex task because
the model and the instances need to be synchronized! In

this section we present a set of co-evolution rules com-
mon in spreadsheets. Such rules define evolution steps for
ClassSheet models and their instances and they guarantee
synchronization. These rules are specified using data re-
finement theory which provides an algebraic framework for
calculating with data types and corresponding values. It con-
sists of type-level coupled with value-level transformations.
The type-level transformations deal with the evolution of
the model and the value-level transformations deal with the
instances of the model (e.g. values).

We have designed an appropriate representation of spread-
sheet models, including the fundamental notions of formula
and references [6]. For these models and their instances,
we have designed coupled transformation rules that cover
specific spreadsheet evolution steps, such as the insertion of
columns in all occurrences of a repeated block of cells. The
rules are divided into three categories [6] combinators, used
as helper rules, semantic rules, intended to change the model
itself (e.g. add a new column), and layout rules, designed to
change the visual arrangement of the spreadsheet (e.g. swap
two columns).
Combinator Rules: The first set of rules, combinators, in-
clude rules such as after, which means “apply the argument
rule after the argument label”. These combinators receive a
rule as an argument and apply it in a specific place of the
model, and thus, they are refinements or isomorphisms if the
argument rule is a refinement or an isomorphism.
Semantic Rules: In [6] we have introduced a full catalog of
spreadsheet evolution refinement rules. The catalog includes
rules such as make it expandable that makes a block of
cells expandable (horizontally or vertically), and split that
moves a column to a new place and replaces it by references
to the new locations. Their full definitions and HASKELL
implementations can be found in [6]. As an example, we
graphically present in Figure 3 the insert a column rule:

Sheet 1
New Sheet 1Sheet 0

Forward transformation

Backward transformation

Figure 3: Adding/removing a column visually.

Sheet 1 represents the original spreadsheet with an ex-
isting column which is transformed in New Sheet 1 when
applied the forward transformation. Applying the backward
function, we get the original spreadsheet, Sheet 1, and a
new sheet containing the removed column, Sheet 0. When
applying the forward function Sheet 0 is not used, and thus,
not necessary to exist at that point in time.



Figure 2: Spreadsheet of an airline company and an abstract model representing it.

The forward transformation, that is, to add a new column
is available in the spreadsheet environment as the button
Col+ (e.g., right-hand part of Figure 2) while the backward
function, that is, to remove a column, in the Col- button.

Layout Rules: As the name suggests, layout rules are
intended to change the arrangement of spreadsheets only,
and not to add or remove any particular information. This
set of rules includes evolution steps for changing the
orientation of a spreadsheet from vertical to horizontal or to
rearrange cells according to some conventions, for example.

Having defined a set of model evolution steps, we can
now evolve the model and have the data automatically co-
evolved. For example, in the ClassSheet of Figure 2, if we
wish to add an attribute meal to a flight, we can do it in
several steps: first, we add a column named Meal to the
Flights class (in the last column of the dark green area,
after column E). Second, we set its default value to ”NO”.
Then, these model evolution steps are automatically reflected
in the data, with a new column Meal being inserted by the
framework in the two Flights instances in the data (new
columns are added after column E and I). Also, the formulas
of columns K are automatically updated.

IV. CLASSSHEET MODEL INFERENCE

Consider the example spreadsheet shown in Figure 4. This
spreadsheet represents again flights of a company, by in a
less organized (but probably more common) manner.

Figure 4: A spreadsheet to store an airline company flights.

The business logic that underlies this spreadsheet is not
immediately clear and is quite difficult to infer for a non-

expert. In this section we will describe a strategy to infer
such a business logic from the data in a spreadsheet.

Objects that are contained in such a spreadsheet and the
relationships between them are reflected by the presence of
functional dependencies between spreadsheet columns.

It is possible to construct a relational model from a
set of observed functional dependencies [3]. Such a model
consists of a set of relation schemas (each given by a
set of column names) and expresses the basic business
model present in the spreadsheet. Each relation schema of
such a model results from grouping functional dependencies
together. For example, for the spreadsheet in Figure 4 we
can infer the following relational model (underlined columns
indicate those on which the other columns are functionally
dependent (primary keys); # indicates attributes referencing
other table columns (foreign keys); tables between symbols
<> represent relationship):
Pilots (ID, Name, Flight hours)
Planes (N-Number, Model, Name)
<Flights> (#ID, #N-Number, Depart, Destination, Date, Hours)

The model has two relations, Pilots and Planes, and a
relationship connecting them, Flights. A relational model is
very expressive, but it is not quite suitable for spreadsheets
From this relation model a ClassSheet can be generated, as
explained in [3]. In fact, the model generated is the one
shown in Figure 2.

The architecture of our approach is sketched in Figure 5.

V. TOOL ARCHITECTURE

In this section we present the architecture of our model-
driven spreadsheet environment. In this environment, end
users can interact both with the ClassSheet model and
the spreadsheet data. Our techniques guarantee the syn-
chronization of the two representations. In this setting, the
spreadsheets consists of two sheets: Sheet 0, containing
the embedded ClassSheet model and Sheet 1, containing
the spreadsheet data that conforms to the model. We have



A ⇀	 B
C	 D	 ⇀	 E	 	 

are provided through a tool, called Gencel, which is an ex-
tension to MS Excel that restricts the definition and pos-
sible evolution of a concrete spreadsheet according to the
specification given by the template. Thus, illegal update
operations like a partial copying or moving of vertical (vex)
or horizontal (hex) recurring groups are prevented. Further-
more, formulas are updated correctly and automatically. For
example, in the case of inserting new instances of vex or hex
groups in a concrete generated spreadsheet. For details on
the type system and spreadsheet generation, we refer to [12].

Figures 2 and 3 demonstrate a somewhat more involved
example of a Vitsl template and a corresponding Gencel
spreadsheet application for a budget calculation. We will
use this application to illustrate some limitations of the
Vitsl/Gencel approach as a motivation for the proposed
ClassSheet model.

Figure 2 shows that a hex group has been defined by clus-
tering columns C, D, and E. The underlying problem domain
requirement was that for each year (and for each category)
the values Qnty, Cost and their product form a logical unit
and should occur in the spreadsheet. The only way to ex-
press this logical clustering of three cells within Vitsl is by
the omission of layout-oriented notations as the two small
vertical bars in the header row between C, D, and E. In Gen-
cel, this grouping causes the corresponding insertion and
deletion of groups of three columns as blocks.2

Now imagine that the Vitsl designer would have grouped
only the cells D and E, which would solely be visible in
Vitsl by an additional bar within the header row between
the columns C and D. This notationally minimally differ-
ent Vitsl model would have resulted in a completely differ-
ent spreadsheet application, in which the horizontal repeti-
tion would have been restricted to the two columns D and
E. This different grouping would express that the quantity
value is fixed for all years, while only the cost value might
vary yearly.

Another possible source for an error-prone spreadsheet
model is due to the indication of references in formu-
las by means of cell-oriented addresses like C4*D4. Here,
once more, the use of business logic-oriented notations like
Qnty*Cost helps to prevent the design of incorrect data com-
putations.

Therefore, since Vitsl is limited to the support of layout-
oriented clustering constraints and cannot express problem-
domain-oriented logical clustering according to business ob-
jects explicitly, the semantic gap between problem domain
requirements and a spreadsheet application still forms a ma-
jor obstacle to yield trustable spreadsheet applications.

3. CLASS SHEETS

In this section, we will introduce our approach of a high-
level, object-oriented model for spreadsheet applications. A
formalization of the approach is presented in the three sub-
sequent sections.

In order to motivate the introduction of a business
application-oriented structure on top of a layout-oriented
Vitsl template structure, we discuss in the following three
simple example spreadsheet applications. The first one (see
Figure 5, left), the so-called income sheet, consists of a list

2Note that when merging cells in MS Excel all but the first
cell entries are lost, so that this groupwise operation is not
possible at all in MS Excel.

of data values, which are summed up and the sum of which
is shown in a separate cell. From an object-oriented point
of view, one can see a summation object, which aggregrates
a list of objects bearing single data values. Looking at the
layout structure, the list of single value objects, consisting
of a header Item and a list of value objects, is embedded into
the layout of the summation object, consisting of a header
entry Income and a footer with the label Total and an ag-
gregation formula assigned to an attribute named total. We
call such an object-oriented extended template a ClassSheet
since it defines classes together with their attributes and
aggregational relationships.

1

A

Income

2

3

Item

value = 0

4 Total

5 total = SUM(Item.value)

...

total : Int

Income

value : Int = 0

Item

*

SUM(Item.value)

IncomeˆItemˆ0↓ˆTotalˆSUM((0,−2))

Figure 5: A simple one-dimensional ClassSheet.

Thus, ClassSheets consists of a list of attribute definitions
grouped by classes and are arranged on a two dimensional
grid. Additional labels are used to annotate the concrete
representation. Class names are set in boldface in contrast
to attribute names and labels, which are set in normal face.
In addition, colored borders are used to depict the different
classes within a ClassSheet.3

Class parts may be spread over header and footer en-
tries, which results in a bracket-like structure indicated by a
square-bracket-like notation of (open) class rectangles. For
example, in Figure 5, the red class Income is split into a
header and footer part that surrounds the blue class Item.
References to other entries, being expressed in Vitsl by co-
ordinates, are defined by using attribute names, as shown in
the SUM formula in the example. Summarizing, ClassSheets
subsume all the information of an equivalent Vitsl template
and can thus easily be translated into an equivalent abstract
Vitsl expression (see Figure 5, bottom). Similarly, a UML-
like representation may be derived from a ClassSheet (see
Figure 5, right) by forgetting all layout information. Ag-
gregation formulas are added as notes to the correspond-
ing attribute definition. Those attributes, called derived
attributes in UML, are tagged by a spreadsheet symbol on
the right of the attribute definition. All other attributes the
values of which are shown in a spreadsheet are tagged by a
spreadsheet symbol on the left of the attribute definition.

Within a spreadsheet design process, it is intended that
the designer works in the first place with a sophisticated
ClassSheet editor. In addition, within a fully-fledged design
environment, the UML class diagram presentation might be
offered to the (expert) designer, who is knowledgeable in
UML, to illustrate her design decisions. In the following we

3We assume in the following that through the use of PDF
this is visible to the reader

are provided through a tool, called Gencel, which is an ex-
tension to MS Excel that restricts the definition and pos-
sible evolution of a concrete spreadsheet according to the
specification given by the template. Thus, illegal update
operations like a partial copying or moving of vertical (vex)
or horizontal (hex) recurring groups are prevented. Further-
more, formulas are updated correctly and automatically. For
example, in the case of inserting new instances of vex or hex
groups in a concrete generated spreadsheet. For details on
the type system and spreadsheet generation, we refer to [12].

Figures 2 and 3 demonstrate a somewhat more involved
example of a Vitsl template and a corresponding Gencel
spreadsheet application for a budget calculation. We will
use this application to illustrate some limitations of the
Vitsl/Gencel approach as a motivation for the proposed
ClassSheet model.

Figure 2 shows that a hex group has been defined by clus-
tering columns C, D, and E. The underlying problem domain
requirement was that for each year (and for each category)
the values Qnty, Cost and their product form a logical unit
and should occur in the spreadsheet. The only way to ex-
press this logical clustering of three cells within Vitsl is by
the omission of layout-oriented notations as the two small
vertical bars in the header row between C, D, and E. In Gen-
cel, this grouping causes the corresponding insertion and
deletion of groups of three columns as blocks.2

Now imagine that the Vitsl designer would have grouped
only the cells D and E, which would solely be visible in
Vitsl by an additional bar within the header row between
the columns C and D. This notationally minimally differ-
ent Vitsl model would have resulted in a completely differ-
ent spreadsheet application, in which the horizontal repeti-
tion would have been restricted to the two columns D and
E. This different grouping would express that the quantity
value is fixed for all years, while only the cost value might
vary yearly.

Another possible source for an error-prone spreadsheet
model is due to the indication of references in formu-
las by means of cell-oriented addresses like C4*D4. Here,
once more, the use of business logic-oriented notations like
Qnty*Cost helps to prevent the design of incorrect data com-
putations.

Therefore, since Vitsl is limited to the support of layout-
oriented clustering constraints and cannot express problem-
domain-oriented logical clustering according to business ob-
jects explicitly, the semantic gap between problem domain
requirements and a spreadsheet application still forms a ma-
jor obstacle to yield trustable spreadsheet applications.

3. CLASS SHEETS

In this section, we will introduce our approach of a high-
level, object-oriented model for spreadsheet applications. A
formalization of the approach is presented in the three sub-
sequent sections.

In order to motivate the introduction of a business
application-oriented structure on top of a layout-oriented
Vitsl template structure, we discuss in the following three
simple example spreadsheet applications. The first one (see
Figure 5, left), the so-called income sheet, consists of a list

2Note that when merging cells in MS Excel all but the first
cell entries are lost, so that this groupwise operation is not
possible at all in MS Excel.

of data values, which are summed up and the sum of which
is shown in a separate cell. From an object-oriented point
of view, one can see a summation object, which aggregrates
a list of objects bearing single data values. Looking at the
layout structure, the list of single value objects, consisting
of a header Item and a list of value objects, is embedded into
the layout of the summation object, consisting of a header
entry Income and a footer with the label Total and an ag-
gregation formula assigned to an attribute named total. We
call such an object-oriented extended template a ClassSheet
since it defines classes together with their attributes and
aggregational relationships.

1

A

Income

2

3

Item

value = 0

4 Total

5 total = SUM(Item.value)

...

total : Int

Income

value : Int = 0

Item

*

SUM(Item.value)

IncomeˆItemˆ0↓ˆTotalˆSUM((0,−2))

Figure 5: A simple one-dimensional ClassSheet.

Thus, ClassSheets consists of a list of attribute definitions
grouped by classes and are arranged on a two dimensional
grid. Additional labels are used to annotate the concrete
representation. Class names are set in boldface in contrast
to attribute names and labels, which are set in normal face.
In addition, colored borders are used to depict the different
classes within a ClassSheet.3

Class parts may be spread over header and footer en-
tries, which results in a bracket-like structure indicated by a
square-bracket-like notation of (open) class rectangles. For
example, in Figure 5, the red class Income is split into a
header and footer part that surrounds the blue class Item.
References to other entries, being expressed in Vitsl by co-
ordinates, are defined by using attribute names, as shown in
the SUM formula in the example. Summarizing, ClassSheets
subsume all the information of an equivalent Vitsl template
and can thus easily be translated into an equivalent abstract
Vitsl expression (see Figure 5, bottom). Similarly, a UML-
like representation may be derived from a ClassSheet (see
Figure 5, right) by forgetting all layout information. Ag-
gregation formulas are added as notes to the correspond-
ing attribute definition. Those attributes, called derived
attributes in UML, are tagged by a spreadsheet symbol on
the right of the attribute definition. All other attributes the
values of which are shown in a spreadsheet are tagged by a
spreadsheet symbol on the left of the attribute definition.

Within a spreadsheet design process, it is intended that
the designer works in the first place with a sophisticated
ClassSheet editor. In addition, within a fully-fledged design
environment, the UML class diagram presentation might be
offered to the (expert) designer, who is knowledgeable in
UML, to illustrate her design decisions. In the following we

3We assume in the following that through the use of PDF
this is visible to the reader

...

Generate SS AppDetect FDs

Infer CS To UML

Original SS Improved SS 

To RDB
To other 

paradigms

Figure 5: Overview of the process of inferring a ClassSheet.

defined an add-on to a widely used spreadsheet system, the
OpenOffice.org system, so end users can evolve their models
by using predefined buttons in the spreadsheet environment
For each button, we defined a OpenOffice.org BASIC script
that interprets the desired functionality, and send the con-
tents of the spreadsheet (both the model and the data) to
the MDSHEET framework. The MDSHEET framework was
developed in HASKELL, and implements the co-evolution of
the spreadsheet models and data. The global architecture of
the tool we developed is presented in Figure 6.

In this environment end users can build the ClassSheet
from scratch using the provided buttons. However, we con-
sider also the inference of the model from the spreadsheet
data [3]. This is particularly important when we are consider-
ing legacy spreadsheets. Moreover, the generated refactored
spreadsheet includes some business logic rules (expressed as
spreadsheet formulas) that assist end users in the safe and
correct introduction/editing of data.

Tool and demonstration video availability: The MD-
SHEET tool and a video with a demonstration of its ca-
pabilities are available at the SSaaPP project web page:
http://ssaapp.di.uminho.pt/mediawiki/index.php/Software.

REFERENCES

[1] R. Panko, “Spreadsheet errors: What we know. what we think
we can do.” Proceedings of the Spreadsheet Risk Symposium,
European Spreadsheet Risks Interest Group (EuSpRIG), 2000.

[2] R. Abraham and M. Erwig, “Inferring templates from spread-
sheets,” in Proc. of the 28th Int. Conf. on Software Engineering.
New York, NY, USA: ACM, 2006, pp. 182–191.

[3] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring
classsheet models from spreadsheets,” in 2010 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing.
IEEE Computer Society, 2010, pp. 93–100.

[4] G. Engels and M. Erwig, “ClassSheets: automatic generation of
spreadsheet applications from object-oriented specifications,”
in 20th IEEE/ACM Int. Conf. on Automated Sof. Eng., Long
Beach, USA. ACM, 2005, pp. 124–133.

Sync

OOBasic sends sheet 
0 (model) to the 

MDSheet back-end

Button pressed

Haskell CS 
data type

Application of 
evolution rule chosen 

by the end user

New Haskell 
CS data type

Forward and 
backward 

transformations

New Haskell 
spreadsheet 

representation

OOBasic sends sheet 
1 (data) to MDSheet 

the back-end

Haskell 
spreadsheet 

representation

Sync

Application of the 
forward/backward 

tansformation

Sheet 0Sheet 1

Sheet 0Sheet 1

Sync

Sync

From the model we can 
generate a template

ClassSheet model inferenceData migration

Figure 6: Spreadsheet model-driven environment.

[5] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Em-
bedding and evolution of spreadsheet models in spreadsheet
systems,” in IEEE Symp. on Visual Languages and Human-
Centric Computing. IEEE CS, 2011, pp. 186–201.

[6] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolu-
tion of spreadsheets,” in Int. Conf. on Fundamental Approaches
to Software Engineering, ser. FASE’11/ETAPS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 186–201.

[7] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger,
“Automatic generation and maintenance of correct spread-
sheets,” in Proc. of the 27th Int. Conf. on Software Eng. New
York, NY, USA: ACM, 2005, pp. 136–145.

[8] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert,
“Visual specifications of correct spreadsheets,” in IEEE Sym-
posium on Visual Languages and Human-Centric Computing.
IEEE Computer Society, 2005, pp. 189–196.


