45,615 research outputs found
Apparatus including a plurality of spaced transformers for locating short circuits in cables
A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined
Topology assessment for 3 + 3 terminal offshore DC grid considering DC fault management
Peer reviewedPostprin
Smart Asset Management for Electric Utilities: Big Data and Future
This paper discusses about future challenges in terms of big data and new
technologies. Utilities have been collecting data in large amounts but they are
hardly utilized because they are huge in amount and also there is uncertainty
associated with it. Condition monitoring of assets collects large amounts of
data during daily operations. The question arises "How to extract information
from large chunk of data?" The concept of "rich data and poor information" is
being challenged by big data analytics with advent of machine learning
techniques. Along with technological advancements like Internet of Things
(IoT), big data analytics will play an important role for electric utilities.
In this paper, challenges are answered by pathways and guidelines to make the
current asset management practices smarter for the future.Comment: 13 pages, 3 figures, Proceedings of 12th World Congress on
Engineering Asset Management (WCEAM) 201
Geophysical investigation along parts of the Dent and Augill Faults
The areas covered in the present investigation lie near the towns of
Brough and Kirkby Stephen. They include parts of the Dent and Augill
Faults, which form the western margins of the Askrigg and Alston Blocks
respectively.
I
The higher ground is open moorland used for sheep-grazing and is difficult
of access except to cross-country vehicles, but the lower ground is in
I
agriculturai use , generally as pasture, and is well served by roads and tracks.
I
The airborne electromagnetic (AEM) survey was restricted to the areas
of known mineral veins (Fig. 1) along the Dent and Augill faults. NO
geochemical exploration was undertaken because of widespread contamination
from the numerous mine dumps.
GEOLOGY
The northern part of the area shown in Fig. 1 was re-surveyed between
1958 and 1967 (Burgess and Holliday, in press) following the 19th-century
primary survey. The southern part has not been completely re-surveyed,
although parts of it were revised for the 1 inch to 1 mile scale geological
map (Kirkby Stephen sheet 40) published in 1972 and detailed mapping of
selected areas has formed part of the present investigations.
The area is mainly underlain by Carboniferous rocks (Fig. 2) and details
of the successions are given in Figs. 2, 5 and 6. Permo-Triassic deposits are
present to the west, j ust beyond the areas of detailed work (Fig. 2).
The oldest Carboniferous rocks exposed are the Orton Group, comprising
marine limestones with sandstones and shales. The lower part of the overlying
Alston Group consists of the massively bedded Great Scar Limestone, about 100 m
thick. The succeeding beds comprise alternating limestones, mudstones,
siltstones and sandstones deposited in a sequence of cyclothems. These are
internally very variable and any one cyclothem is rarely fully developed
Determination of protection system requirements for DC UAV electrical power networks for enhanced capability and survivability
A growing number of designs of future Unmanned Aerial Vehicle (UAV) applications utilise dc for the primary power distribution method. Such systems typically employ large numbers of power electronic converters as interfaces for novel loads and generators. The characteristic behaviour of these systems under electrical fault conditions, and in particular their natural response, can produce particularly demanding protection requirements. Whilst a number of protection methods for multi-terminal dc networks have been proposed in literature, these are not universally applicable and will not meet the specific protection challenges associated with the aerospace domain. Through extensive analysis, this paper seeks to determine the operating requirements of protection systems for compact dc networks proposed for future UAV applications, with particular emphasis on dealing with the issues of capacitive discharge in these compact networks. The capability of existing multi-terminal dc network protection methods and technologies are then assessed against these criteria in order to determine their suitability for UAV applications. Recommendations for best protection practice are then proposed and key inhibiting research challenges are discussed
Modular multilevel converter with modified half-bridge submodule and arm filter for dc transmission systems with DC fault blocking capability
Although a modular multilevel converter (MMC) is universally accepted as a suitable converter topology for the high voltage dc transmission systems, its dc fault ride performance requires substantial improvement in order to be used in critical infrastructures such as transnational multi-terminal dc (MTDC) networks. Therefore, this paper proposes a modified submodule circuit for modular multilevel converter that offers an improved dc fault ride through performance with reduced semiconductor losses and enhanced control flexibility compared to that achievable with full-bridge submodules. The use of the proposed submodules allows MMC to retain its modularity; with semiconductor loss similar to that of the mixed submodules MMC, but higher than that of the half-bridge submodules. Besides dc fault blocking, the proposed submodule offers the possibility of controlling ac current in-feed during pole-to-pole dc short circuit fault, and this makes such submodule increasingly attractive and useful for continued operation of MTDC networks during dc faults. The aforesaid attributes are validated using simulations performed in MATLAB/SIMULINK, and substantiated experimentally using the proposed submodule topology on a 4-level small-scale MMC prototype
Rough set theory applied to pattern recognition of partial discharge in noise affected cable data
This paper presents an effective, Rough Set (RS) based, pattern recognition method for rejecting interference signals and recognising Partial Discharge (PD) signals from different sources. Firstly, RS theory is presented in terms of Information System, Lower and Upper Approximation, Signal Discretisation, Attribute Reduction and a flowchart of the RS based pattern recognition method. Secondly, PD testing of five types of artificial defect in ethylene-propylene rubber (EPR) cable is carried out and data pre-processing and feature extraction are employed to separate PD and interference signals. Thirdly, the RS based PD signal recognition method is applied to 4000 samples and is proven to have 99% accuracy. Fourthly, the RS based PD recognition method is applied to signals from five different sources and an accuracy of more than 93% is attained when a combination of signal discretisation and attribute reduction methods are applied. Finally, Back-propagation Neural Network (BPNN) and Support Vector Machine (SVM) methods are studied and compared with the developed method. The proposed RS method is proven to have higher accuracy than SVM and BPNN and can be applied for on-line PD monitoring of cable systems after training with valid sample data
Application of multiple resistive superconducting fault-current limiters for fast fault detection in highly interconnected distribution systems
Superconducting fault-current limiters (SFCLs) offer several benefits for electrical distribution systems, especially with increasing distributed generation and the requirements for better network reliability and efficiency. This paper examines the use of multiple SFCLs in a protection scheme to locate faulted circuits, using an approach which is radically different from typical proposed applications of fault current limitation, and also which does not require communications. The technique, referred to as “current division discrimination” (CDD), is based upon the intrinsic inverse current-time characteristics of resistive SFCLs, which ensures that only the SFCLs closest to a fault operate. CDD is especially suited to meshed networks and particularly when the network topology may change over time. Meshed networks are expensive and complex to protect using conventional methods. Simulation results with multiple SFCLs, using a thermal-electric superconductor model, confirm that CDD operates as expected. Nevertheless, CDD has limitations, which are examined in this paper. The SFCLs must be appropriately rated for the maximum system fault level, although some variation in actual fault level can be tolerated. For correct coordination between SFCLs, each bus must have at least three circuits that can supply fault current, and the SFCLs should have identical current-time characteristics
A two-level structure for advanced space power system automation
The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed
- …
