5,371,262 research outputs found

    Elaboration in Dependent Type Theory

    Full text link
    To be usable in practice, interactive theorem provers need to provide convenient and efficient means of writing expressions, definitions, and proofs. This involves inferring information that is often left implicit in an ordinary mathematical text, and resolving ambiguities in mathematical expressions. We refer to the process of passing from a quasi-formal and partially-specified expression to a completely precise formal one as elaboration. We describe an elaboration algorithm for dependent type theory that has been implemented in the Lean theorem prover. Lean's elaborator supports higher-order unification, type class inference, ad hoc overloading, insertion of coercions, the use of tactics, and the computational reduction of terms. The interactions between these components are subtle and complex, and the elaboration algorithm has been carefully designed to balance efficiency and usability. We describe the central design goals, and the means by which they are achieved

    Type IIA D-Branes, K-Theory, and Matrix Theory

    Get PDF
    We show that all supersymmetric Type IIA D-branes can be constructed as bound states of a certain number of unstable non-supersymmetric Type IIA D9-branes. This string-theoretical construction demonstrates that D-brane charges in Type IIA theory on spacetime manifold XX are classified by the higher K-theory group K1(X)K^{-1}(X), as suggested recently by Witten. In particular, the system of NN D0-branes can be obtained, for any NN, in terms of sixteen Type IIA D9-branes. This suggests that the dynamics of Matrix theory is contained in the physics of magnetic vortices on the worldvolume of sixteen unstable D9-branes, described at low energies by a U(16) gauge theory.Comment: 32 pages (published version

    Minimal Type Theory (MTT)

    Get PDF
    Minimal Type Theory (MTT) is based on type theory in that it is agnostic about Predicate Logic level and expressly disallows the evaluation of incompatible types. It is called Minimal because it has the fewest possible number of fundamental types, and has all of its syntax expressed entirely as the connections in a directed acyclic graph

    A dependent nominal type theory

    Full text link
    Nominal abstract syntax is an approach to representing names and binding pioneered by Gabbay and Pitts. So far nominal techniques have mostly been studied using classical logic or model theory, not type theory. Nominal extensions to simple, dependent and ML-like polymorphic languages have been studied, but decidability and normalization results have only been established for simple nominal type theories. We present a LF-style dependent type theory extended with name-abstraction types, prove soundness and decidability of beta-eta-equivalence checking, discuss adequacy and canonical forms via an example, and discuss extensions such as dependently-typed recursion and induction principles

    Internal Parametricity for Cubical Type Theory

    Get PDF
    We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, and we give an account of the identity extension lemma for internal parametricity

    Towards a directed homotopy type theory

    Get PDF
    In this paper, we present a directed homotopy type theory for reasoning synthetically about (higher) categories, directed homotopy theory, and its applications to concurrency. We specify a new `homomorphism' type former for Martin-L\"of type theory which is roughly analogous to the identity type former originally introduced by Martin-L\"of. The homomorphism type former is meant to capture the notions of morphism (from the theory of categories) and directed path (from directed homotopy theory) just as the identity type former is known to capture the notions of isomorphism (from the theory of groupoids) and path (from homotopy theory). Our main result is an interpretation of these homomorphism types into Cat, the category of small categories. There, the interpretation of each homomorphism type hom(a,b) is indeed the set of morphisms between the objects a and b of a category C. We end the paper with an analysis of the interpretation in Cat with which we argue that our homomorphism types are indeed the directed version of Martin-L\"of's identity types
    corecore