2,265 research outputs found

    Kinematic and Dynamic Analysis of the 2-DOF Spherical Wrist of Orthoglide 5-axis

    Get PDF
    This paper deals with the kinematics and dynamics of a two degree of freedom spherical manipulator, the wrist of Orthoglide 5-axis. The latter is a parallel kinematics machine composed of two manipulators: i) the Orthoglide 3-axis; a three-dof translational parallel manipulator that belongs to the family of Delta robots, and ii) the Agile eye; a two-dof parallel spherical wrist. The geometric and inertial parameters used in the model are determined by means of a CAD software. The performance of the spherical wrist is emphasized by means of several test trajectories. The effects of machining and/or cutting forces and the length of the cutting tool on the dynamic performance of the wrist are also analyzed. Finally, a preliminary selection of the motors is proposed from the velocities and torques required by the actuators to carry out the test trajectories

    Workspace Analysis of the Parallel Module of the VERNE Machine

    Get PDF
    The paper addresses geometric aspects of a spatial three-degree-of-freedom parallel module, which is the parallel module of a hybrid serial-parallel 5-axis machine tool. This parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. Each leg is made up of one prismatic and two pairs of spherical joint, which are connected in a way that the combined effects of the three legs lead to an over-constrained mechanism with complex motion. This motion is defined as a simultaneous combination of rotation and translation. A method for computing the complete workspace of the VERNE parallel module for various tool lengths is presented. An algorithm describing this method is also introduced

    Kinematic Analysis and Trajectory Planning of the Orthoglide 5-axis

    Get PDF
    The subject of this paper is about the kinematic analysis and the trajectory planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of freedom parallel kinematic machine developed at IRCCyN and is made up of a hybrid architecture, namely, a three degrees of freedom translational parallel manip-ulator mounted in series with a two degrees of freedom parallel spherical wrist. The simpler the kinematic modeling of the Or-thoglide 5-axis, the higher the maximum frequency of its control loop. Indeed, the control loop of a parallel kinematic machine should be computed with a high frequency, i.e., higher than 1.5 MHz, in order the manipulator to be able to reach high speed motions with a good accuracy. Accordingly, the direct and inverse kinematic models of the Orthoglide 5-axis, its inverse kine-matic Jacobian matrix and the first derivative of the latter with respect to time are expressed in this paper. It appears that the kinematic model of the manipulator under study can be written in a quadratic form due to the hybrid architecture of the Orthoglide 5-axis. As illustrative examples, the profiles of the actuated joint angles (lengths), velocities and accelerations that are used in the control loop of the robot are traced for two test trajectories.Comment: Appears in International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Aug 2015, Boston, United States. 201

    Structural and kinematic synthesis of overconstrained mechanisms

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 133-140)Text in English; Abstract: Turkish and Englishxiii, 140 leavesInvestigation on overconstrained mechanisms needs attention especially in the structural synthesis. Knowing overconstrained conditions and including them in the design process will help creating manipulators with less degree of freedom (DoF) and more rigidity. Also this knowledge of overconstrained conditions will clarify concept of mobility of the parallel manipulators. Another subject, kinematic synthesis of overconstrained mechanisms, is important because it will allow describing a function, path, or motion with less DoF less number of joints. The aim of this thesis is to describe a generalized approach for structural synthesis and creation of new overconstrained manipulators and to describe a potentially generalizable approach for function and motion generation synthesis of overconstrained mechanism. Moreover, screw theory is investigated as a mathematical base for defining kinematics of overconstrained mechanisms. Also, overconstrained mechanisms are investigated and generation of new mechanisms is introduced with examples. Some mathematical models for the subspace geometries are given. A method for defining overconstrained simple structural groups is introduced and extended to design of manipulators with examples and solid drawings. Linear approximation and least squares approximation methods are used for the function generation and motion generation of overconstrained 6R mechanisms. A gap of describing overconstrained manipulators is filled in the area of structural synthesis. A general methodology is described for structural synthesis, mobility and motion calculations of overconstrained manipulators using simple structural groups. A potentially generalizable method for the kinematic synthesis of overconstrained manipulators is described both for function and motion generation

    Biokinematic analysis of human body

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2011Includes bibliographical references (leaves: 118-123)Text in English; Abstract: Turkish and Englishxiii, 123 leavesThis thesis concentrates on the development of rigid body geometries by using method of intersections, where simple geometric shapes representing revolute (R) and prismatic (P) joint motions are intersected by means of desired space or subspace requirements to create specific rigid body geometries in predefined octahedral fixed frame. Using the methodical approach, space and subspace motions are clearly visualized by the help of resulting geometrical entities that have physical constraints with respect to the fixed working volume. Also, this work focuses on one of the main areas of the fundamental mechanism and machine science, which is the structural synthesis of robot manipulators by inserting recurrent screws into the theory. After the transformation unit screw equations are presented, physical representations and kinematic representations of kinematic pairs with recurrent screws are given and the new universal mobility formulations for mechanisms and manipulators are introduced. Moreover the study deals with the synthesis of mechanisms by using quaternion and dual quaternion algebra to derive the objective function. Three different methods as interpolation approximation, least squares approximation and Chebyshev approximation is introduced in the function generation synthesis procedures of spherical four bar mechanism in six precision points. Separate examples are given for each section and the results are tabulated. Comparisons between the methods are also given. As an application part of the thesis, the most important elements of the human body and skeletal system is investigated by means of their kinematic structures and degrees of freedom. At the end of each section, an example is given as a mechanism or manipulator that can represent the behavior of the related element in the human body

    Kinematic and dynamic analysis of spatial six degree of freedom parallel structure manipulator

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2003Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishviii, 86 leavesThis thesis covers a study on kinematic and dynamic analysis of a new type of spatial six degree of freedom parallel manipulator. The background for structural synthesis of parallel manipulators is also given. The structure of the said manipulator is especially designed to cover a larger workspace then well-known Stewart Platform and its derivates. The main point of interest for this manipulator is its hybrid actuating system, consisting of three revolute and three linear actuators.Kinematic analysis comprises forward and inverse displacement analysis. Screw Theory and geometric constraint considerations were the main tools used. While it was possible to derive a closed-form solution for the inverse displacement analysis, a numerical approach was used to solve the problem of forward displacement analysis. Based on the results of the kinematic analysis, a rough workspace study of the manipulator is also accomplished. On the dynamics part, attention has been given on inverse dynamics problem using Lagrange-Euler approach.Both high and lower level software were heavily utilized. Also computer software called .CASSoM. and .iMIDAS. are developed to be used for structural synthesis and inverse displacement analysis. The major contribution of the study to the scientific community is the proposal of a new type of parallel manipulator, which has to be studied extensively regarding its other interesting properties

    Mechanism Design of Haptic Devices

    Get PDF

    A New 3-DoF Planar Parallel Manipulator with Unlimited Rotation Capability

    Get PDF
    International audienceMost of three-degree-of-freedom (3-DoF) planar parallel manipulators encountered today have a common disadvantage that is their low rotational capability. However, for many industrial applications, by example in automated assembly systems, cutting machines, simulators, or micro-motion manipulators, a high rotation capability is needed. To overcome such a difficulty, this paper focuses its attention on the proposal of a new 3-DoF planar parallel manipulator capable of high rotational capability. Firstly, structure and mobility of the suggested manipulator are discussed. Then the forward and inverse kinematic problems are analyzed, as well as it is disclosed its singular configurations. The shaking force and shaking moment balancing are also considered. The proposed design concept is illustrated by a driven demonstrator which is a first model of the suggested manipulator
    • …
    corecore