3,848 research outputs found

    A Trade-off Analysis of Energy Detectors and Partitioned Search for Primary Detection

    Get PDF
    Cognitive radios aim to coexist in the unused spectrum bands which are licensed to primary users without harming the primary transmission/reception. For a cognitive radio, it is important to detect the band in which the primary is operating as fast as possible and with high reliability in order to adapt its transmission. In this work, we propose P-partitioning method in combination with energy detectors for the search of the band that the primary user is operating. In the P-partitioning method, the spectrum bands are categorized into P groups and the group that the primary band belongs to is detected in a recursive fashion. The energy detector operates on each group and the test statistics is the total energy received in the bands belonging to the group. The proposed search technique has detection time PlogP(N), where N is the number of bands in the spectrum. When P = N, the proposed scheme is equivalent to linear search with detection time N. We study the performance of the proposed scheme for a single non-cooperative radio and also for multiple cooperating radios. For a single cognitive radio, we provide an upper bound on the probability of correct detection which presents two different regimes of operation. In the low SNR regime, although it is counter-intuitive the partitioning improves the probability of detection. This is due an averaging effect when the signal energy in different bands are accumulated to obtain the energy contribution from a group. In the high SNR regime, performance degrades with partitioning. In addition, we observe that user cooperation improves the performance in the high SNR regimes

    Throughput and Collision Analysis of Multi-Channel Multi-Stage Spectrum Sensing Algorithms

    Full text link
    Multi-stage sensing is a novel concept that refers to a general class of spectrum sensing algorithms that divide the sensing process into a number of sequential stages. The number of sensing stages and the sensing technique per stage can be used to optimize performance with respect to secondary user throughput and the collision probability between primary and secondary users. So far, the impact of multi-stage sensing on network throughput and collision probability for a realistic network model is relatively unexplored. Therefore, we present the first analytical framework which enables performance evaluation of different multi-channel multi-stage spectrum sensing algorithms for Opportunistic Spectrum Access networks. The contribution of our work lies in studying the effect of the following parameters on performance: number of sensing stages, physical layer sensing techniques and durations per each stage, single and parallel channel sensing and access, number of available channels, primary and secondary user traffic, buffering of incoming secondary user traffic, as well as MAC layer sensing algorithms. Analyzed performance metrics include the average secondary user throughput and the average collision probability between primary and secondary users. Our results show that when the probability of primary user mis-detection is constrained, the performance of multi-stage sensing is, in most cases, superior to the single stage sensing counterpart. Besides, prolonged channel observation at the first stage of sensing decreases the collision probability considerably, while keeping the throughput at an acceptable level. Finally, in realistic primary user traffic scenarios, using two stages of sensing provides a good balance between secondary users throughput and collision probability while meeting successful detection constraints subjected by Opportunistic Spectrum Access communication

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Capacity scaling law by multiuser diversity in cognitive radio systems

    Full text link
    This paper analyzes the multiuser diversity gain in a cognitive radio (CR) system where secondary transmitters opportunistically utilize the spectrum licensed to primary users only when it is not occupied by the primary users. To protect the primary users from the interference caused by the missed detection of primary transmissions in the secondary network, minimum average throughput of the primary network is guaranteed by transmit power control at the secondary transmitters. The traffic dynamics of a primary network are also considered in our analysis. We derive the average achievable capacity of the secondary network and analyze its asymptotic behaviors to characterize the multiuser diversity gains in the CR system.Comment: 5 pages, 2 figures, ISIT2010 conferenc
    • …
    corecore