2 research outputs found

    A space-time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives

    Full text link
    We propose a direct numerical method for the solution of an optimal control problem governed by a two-side space-fractional diffusion equation. The presented method contains two main steps. In the first step, the space variable is discretized by using the Jacobi-Gauss pseudospectral discretization and, in this way, the original problem is transformed into a classical integer-order optimal control problem. The main challenge, which we faced in this step, is to derive the left and right fractional differentiation matrices. In this respect, novel techniques for derivation of these matrices are presented. In the second step, the Legendre-Gauss-Radau pseudospectral method is employed. With these two steps, the original problem is converted into a convex quadratic optimization problem, which can be solved efficiently by available methods. Our approach can be easily implemented and extended to cover fractional optimal control problems with state constraints. Five test examples are provided to demonstrate the efficiency and validity of the presented method. The results show that our method reaches the solutions with good accuracy and a low CPU time.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Vibration and Control', available from [http://journals.sagepub.com/home/jvc]. Submitted 02-June-2018; Revised 03-Sept-2018; Accepted 12-Oct-201

    Numerical approximations of fractional differential equations: a Chebyshev pseudo-spectral approach.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.This study lies at the interface of fractional calculus and numerical methods. Recent studies suggest that fractional differential and integral operators are well suited to model physical phenomena with intrinsic memory retention and anomalous behaviour. The global property of fractional operators presents difficulties in fnding either closed-form solutions or accurate numerical solutions to fractional differential equations. In rare cases, when analytical solutions are available, they often exist only in terms of complex integrals and special functions, or as infinite series. Similarly, obtaining an accurate numerical solution to arbitrary order differential equation is often computationally demanding. Fractional operators are non-local, and so it is practicable that when approximating fractional operators, non-local methods should be preferred. One such non-local method is the spectral method. In this thesis, we solve problems that arise in the ow of non-Newtonian fluids modelled with fractional differential operators. The recurrent theme in this thesis is the development, testing and presentation of tractable, accurate and computationally efficient numerical schemes for various classes of fractional differential equations. The numerical schemes are built around the pseudo{spectral collocation method and shifted Chebyshev polynomials of the first kind. The literature shows that pseudo-spectral methods converge geometrically, are accurate and computationally efficient. The objective of this thesis is to show, among other results, that these features are true when the method is applied to a variety of fractional differential equations. A survey of the literature shows that many studies in which pseudo-spectral methods are used to numerically approximate the solutions of fractional differential equations often to do this by expanding the solution in terms of certain orthogonal polynomials and then simultaneously solving for the coefficients of expansion. In this study, however, the orthogonality condition of the Chebyshev polynomials of the first kind and the Chebyshev-Gauss-Lobatto quadrature are used to numerically find the coefficients of the series expansions. This approach is then applied to solve various fractional differential equations, which include, but are not limited to time{space fractional differential equations, two{sided fractional differential equations and distributed order differential equations. A theoretical framework is provided for the convergence of the numerical schemes of each of the aforementioned classes of fractional differential equations. The overall results, which include theoretical analysis and numerical simulations, demonstrate that the numerical method performs well in comparison to existing studies and is appropriate for any class of arbitrary order differential equations. The schemes are easy to implement and computationally efficient
    corecore