6,232 research outputs found

    {StyleRig}: {R}igging {StyleGAN} for {3D} Control Over Portrait Images

    Get PDF

    StyleRig: Rigging StyleGAN for 3D Control over Portrait Images

    Get PDF
    StyleGAN generates photorealistic portrait images of faces with eyes, teeth, hair and context (neck, shoulders, background), but lacks a rig-like control over semantic face parameters that are interpretable in 3D, such as face pose, expressions, and scene illumination. Three-dimensional morphable face models (3DMMs) on the other hand offer control over the semantic parameters, but lack photorealism when rendered and only model the face interior, not other parts of a portrait image (hair, mouth interior, background). We present the first method to provide a face rig-like control over a pretrained and fixed StyleGAN via a 3DMM. A new rigging network, RigNet is trained between the 3DMM's semantic parameters and StyleGAN's input. The network is trained in a self-supervised manner, without the need for manual annotations. At test time, our method generates portrait images with the photorealism of StyleGAN and provides explicit control over the 3D semantic parameters of the face

    DreamArtist: Towards Controllable One-Shot Text-to-Image Generation via Contrastive Prompt-Tuning

    Full text link
    Large-scale text-to-image generation models with an exponential evolution can currently synthesize high-resolution, feature-rich, high-quality images based on text guidance. However, they are often overwhelmed by words of new concepts, styles, or object entities that always emerge. Although there are some recent attempts to use fine-tuning or prompt-tuning methods to teach the model a new concept as a new pseudo-word from a given reference image set, these methods are not only still difficult to synthesize diverse and high-quality images without distortion and artifacts, but also suffer from low controllability. To address these problems, we propose a DreamArtist method that employs a learning strategy of contrastive prompt-tuning, which introduces both positive and negative embeddings as pseudo-words and trains them jointly. The positive embedding aggressively learns characteristics in the reference image to drive the model diversified generation, while the negative embedding introspects in a self-supervised manner to rectify the mistakes and inadequacies from positive embedding in reverse. It learns not only what is correct but also what should be avoided. Extensive experiments on image quality and diversity analysis, controllability analysis, model learning analysis and task expansion have demonstrated that our model learns not only concept but also form, content and context. Pseudo-words of DreamArtist have similar properties as true words to generate high-quality images

    Bias in Deep Learning and Applications to Face Analysis

    Get PDF
    Deep learning has fostered the progress in the field of face analysis, resulting in the integration of these models in multiple aspects of society. Even though the majority of research has focused on optimizing standard evaluation metrics, recent work has exposed the bias of such algorithms as well as the dangers of their unaccountable utilization.n this thesis, we explore the bias of deep learning models in the discriminative and the generative setting. We begin by investigating the bias of face analysis models with regards to different demographics. To this end, we collect KANFace, a large-scale video and image dataset of faces captured ``in-the-wild’'. The rich set of annotations allows us to expose the demographic bias of deep learning models, which we mitigate by utilizing adversarial learning to debias the deep representations. Furthermore, we explore neural augmentation as a strategy towards training fair classifiers. We propose a style-based multi-attribute transfer framework that is able to synthesize photo-realistic faces of the underrepresented demographics. This is achieved by introducing a multi-attribute extension to Adaptive Instance Normalisation that captures the multiplicative interactions between the representations of different attributes. Focusing on bias in gender recognition, we showcase the efficacy of the framework in training classifiers that are more fair compared to generative and fairness-aware methods.In the second part, we focus on bias in deep generative models. In particular, we start by studying the generalization of generative models on images of unseen attribute combinations. To this end, we extend the conditional Variational Autoencoder by introducing a multilinear conditioning framework. The proposed method is able to synthesize unseen attribute combinations by modeling the multiplicative interactions between the attributes. Lastly, in order to control protected attributes, we investigate controlled image generation without training on a labelled dataset. We leverage pre-trained Generative Adversarial Networks that are trained in an unsupervised fashion and exploit the clustering that occurs in the representation space of intermediate layers of the generator. We show that these clusters capture semantic attribute information and condition image synthesis on the cluster assignment using Implicit Maximum Likelihood Estimation.Open Acces

    Progress and Prospects in 3D Generative AI: A Technical Overview including 3D human

    Full text link
    While AI-generated text and 2D images continue to expand its territory, 3D generation has gradually emerged as a trend that cannot be ignored. Since the year 2023 an abundant amount of research papers has emerged in the domain of 3D generation. This growth encompasses not just the creation of 3D objects, but also the rapid development of 3D character and motion generation. Several key factors contribute to this progress. The enhanced fidelity in stable diffusion, coupled with control methods that ensure multi-view consistency, and realistic human models like SMPL-X, contribute synergistically to the production of 3D models with remarkable consistency and near-realistic appearances. The advancements in neural network-based 3D storing and rendering models, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have accelerated the efficiency and realism of neural rendered models. Furthermore, the multimodality capabilities of large language models have enabled language inputs to transcend into human motion outputs. This paper aims to provide a comprehensive overview and summary of the relevant papers published mostly during the latter half year of 2023. It will begin by discussing the AI generated object models in 3D, followed by the generated 3D human models, and finally, the generated 3D human motions, culminating in a conclusive summary and a vision for the future
    • …
    corecore