1,710 research outputs found

    Põhjalik uuring ülisuure dünaamilise ulatusega piltide toonivastendamisest koos subjektiivsete testidega

    Get PDF
    A high dynamic range (HDR) image has a very wide range of luminance levels that traditional low dynamic range (LDR) displays cannot visualize. For this reason, HDR images are usually transformed to 8-bit representations, so that the alpha channel for each pixel is used as an exponent value, sometimes referred to as exponential notation [43]. Tone mapping operators (TMOs) are used to transform high dynamic range to low dynamic range domain by compressing pixels so that traditional LDR display can visualize them. The purpose of this thesis is to identify and analyse differences and similarities between the wide range of tone mapping operators that are available in the literature. Each TMO has been analyzed using subjective studies considering different conditions, which include environment, luminance, and colour. Also, several inverse tone mapping operators, HDR mappings with exposure fusion, histogram adjustment, and retinex have been analysed in this study. 19 different TMOs have been examined using a variety of HDR images. Mean opinion score (MOS) is calculated on those selected TMOs by asking the opinion of 25 independent people considering candidates’ age, vision, and colour blindness

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Methods for Improving the Tone Mapping for Backward Compatible High Dynamic Range Image and Video Coding

    Get PDF
    International audienceBackward compatibility for high dynamic range image and video compression forms one of the essential requirements in the transition phase from low dynamic range (LDR) displays to high dynamic range (HDR) displays. In a recent work [1], the problems of tone mapping and HDR video coding are originally fused together in the same mathematical framework, and an optimized solution for tone mapping is achieved in terms of the mean square error (MSE) of the logarithm of luminance values. In this paper, we improve this pioneer study in three aspects by considering its three shortcomings. First, the proposed method [1] works over the logarithms of luminance values which are not uniform with respect to Human Visual System (HVS) sensitivity. We propose to use the perceptually uniform luminance values as an alternative for the optimization of tone mapping curve. Second, the proposed method [1] does not take the quality of the resulting tone mapped images into account during the formulation in contrary to the main goal of tone mapping research. We include the LDR image quality as a constraint to the optimization problem and develop a generic methodology to compromise the trade-off between HDR and LDR image qualities for coding. Third, the proposed method [1] simply applies a low-pass filter to the generated tone curves for video frames to avoid flickering during the adaptation of the method to the video. We instead include an HVS based flickering constraint to the optimization and derive a methodology to compromise the trade-off between the rate-distortion performance and flickering distortion. The superiority of the proposed methodologies is verified with experiments on HDR images and video sequences

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Improved quality block-based low bit rate video coding.

    Get PDF
    The aim of this research is to develop algorithms for enhancing the subjective quality and coding efficiency of standard block-based video coders. In the past few years, numerous video coding standards based on motion-compensated block-transform structure have been established where block-based motion estimation is used for reducing the correlation between consecutive images and block transform is used for coding the resulting motion-compensated residual images. Due to the use of predictive differential coding and variable length coding techniques, the output data rate exhibits extreme fluctuations. A rate control algorithm is devised for achieving a stable output data rate. This rate control algorithm, which is essentially a bit-rate estimation algorithm, is then employed in a bit-allocation algorithm for improving the visual quality of the coded images, based on some prior knowledge of the images. Block-based hybrid coders achieve high compression ratio mainly due to the employment of a motion estimation and compensation stage in the coding process. The conventional bit-allocation strategy for these coders simply assigns the bits required by the motion vectors and the rest to the residual image. However, at very low bit-rates, this bit-allocation strategy is inadequate as the motion vector bits takes up a considerable portion of the total bit-rate. A rate-constrained selection algorithm is presented where an analysis-by-synthesis approach is used for choosing the best motion vectors in term of resulting bit rate and image quality. This selection algorithm is then implemented for mode selection. A simple algorithm based on the above-mentioned bit-rate estimation algorithm is developed for the latter to reduce the computational complexity. For very low bit-rate applications, it is well-known that block-based coders suffer from blocking artifacts. A coding mode is presented for reducing these annoying artifacts by coding a down-sampled version of the residual image with a smaller quantisation step size. Its applications for adaptive source/channel coding and for coding fast changing sequences are examined

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Fitting and tracking of a scene model in very low bit rate video coding

    Get PDF

    Acquisition and Encoding of High Dynamic Range Images using Inverse Tone Mapping

    Full text link
    corecore