17,711 research outputs found

    ENABLING EFFICIENT FLEET COMPOSITION SELECTION THROUGH THE DEVELOPMENT OF A RANK HEURISTIC FOR A BRANCH AND BOUND METHOD

    Get PDF
    In the foreseeable future, autonomous mobile robots (AMRs) will become a key enabler for increasing productivity and flexibility in material handling in warehousing facilities, distribution centers and manufacturing systems. The objective of this research is to develop and validate parametric models of AMRs, develop ranking heuristic using a physics-based algorithm within the framework of the Branch and Bound method, integrate the ranking algorithm into a Fleet Composition Optimization (FCO) tool, and finally conduct simulations under various scenarios to verify the suitability and robustness of the developed tool in a factory equipped with AMRs. Kinematic-based equations are used for computing both energy and time consumption. Multivariate linear regression, a data-driven method, is used for designing the ranking heuristic. The results indicate that the unique physical structures and parameters of each robot are the main factors contributing to differences in energy and time consumption. improvement on reducing computation time was achieved by comparing heuristic-based search and non-heuristic-based search. This research is expected to significantly improve the current nested fleet composition optimization tool by reducing computation time without sacrificing optimality. From a practical perspective, greater efficiency in reducing energy and time costs can be achieved.Ford Motor CompanyNo embargoAcademic Major: Aerospace Engineerin

    Corporate Social Responsibility: the institutionalization of ESG

    Get PDF
    Understanding the impact of Corporate Social Responsibility (CSR) on firm performance as it relates to industries reliant on technological innovation is a complex and perpetually evolving challenge. To thoroughly investigate this topic, this dissertation will adopt an economics-based structure to address three primary hypotheses. This structure allows for each hypothesis to essentially be a standalone empirical paper, unified by an overall analysis of the nature of impact that ESG has on firm performance. The first hypothesis explores the evolution of CSR to the modern quantified iteration of ESG has led to the institutionalization and standardization of the CSR concept. The second hypothesis fills gaps in existing literature testing the relationship between firm performance and ESG by finding that the relationship is significantly positive in long-term, strategic metrics (ROA and ROIC) and that there is no correlation in short-term metrics (ROE and ROS). Finally, the third hypothesis states that if a firm has a long-term strategic ESG plan, as proxied by the publication of CSR reports, then it is more resilience to damage from controversies. This is supported by the finding that pro-ESG firms consistently fared better than their counterparts in both financial and ESG performance, even in the event of a controversy. However, firms with consistent reporting are also held to a higher standard than their nonreporting peers, suggesting a higher risk and higher reward dynamic. These findings support the theory of good management, in that long-term strategic planning is both immediately economically beneficial and serves as a means of risk management and social impact mitigation. Overall, this contributes to the literature by fillings gaps in the nature of impact that ESG has on firm performance, particularly from a management perspective

    Reinforcement Learning-based User-centric Handover Decision-making in 5G Vehicular Networks

    Get PDF
    The advancement of 5G technologies and Vehicular Networks open a new paradigm for Intelligent Transportation Systems (ITS) in safety and infotainment services in urban and highway scenarios. Connected vehicles are vital for enabling massive data sharing and supporting such services. Consequently, a stable connection is compulsory to transmit data across the network successfully. The new 5G technology introduces more bandwidth, stability, and reliability, but it faces a low communication range, suffering from more frequent handovers and connection drops. The shift from the base station-centric view to the user-centric view helps to cope with the smaller communication range and ultra-density of 5G networks. In this thesis, we propose a series of strategies to improve connection stability through efficient handover decision-making. First, a modified probabilistic approach, M-FiVH, aimed at reducing 5G handovers and enhancing network stability. Later, an adaptive learning approach employed Connectivity-oriented SARSA Reinforcement Learning (CO-SRL) for user-centric Virtual Cell (VC) management to enable efficient handover (HO) decisions. Following that, a user-centric Factor-distinct SARSA Reinforcement Learning (FD-SRL) approach combines time series data-oriented LSTM and adaptive SRL for VC and HO management by considering both historical and real-time data. The random direction of vehicular movement, high mobility, network load, uncertain road traffic situation, and signal strength from cellular transmission towers vary from time to time and cannot always be predicted. Our proposed approaches maintain stable connections by reducing the number of HOs by selecting the appropriate size of VCs and HO management. A series of improvements demonstrated through realistic simulations showed that M-FiVH, CO-SRL, and FD-SRL were successful in reducing the number of HOs and the average cumulative HO time. We provide an analysis and comparison of several approaches and demonstrate our proposed approaches perform better in terms of network connectivity

    On Monte Carlo methods for the Dirichlet process mixture model, and the selection of its precision parameter prior

    Get PDF
    Two issues commonly faced by users of Dirichlet process mixture models are: 1) how to appropriately select a hyperprior for its precision parameter alpha, and 2) the typically slow mixing of the MCMC chain produced by conditional Gibbs samplers based on its stick-breaking representation, as opposed to marginal collapsed Gibbs samplers based on the Polya urn, which have smaller integrated autocorrelation times. In this thesis, we analyse the most common approaches to hyperprior selection for alpha, we identify their limitations, and we propose a new methodology to overcome them. To address slow mixing, we revisit three label-switching Metropolis moves from the literature (Hastie et al., 2015; Papaspiliopoulos and Roberts, 2008), improve them, and introduce a fourth move. Secondly, we revisit two i.i.d. sequential importance samplers which operate in the collapsed space (Liu, 1996; S. N. MacEachern et al., 1999), and we develop a new sequential importance sampler for the stick-breaking parameters of Dirichlet process mixtures, which operates in the stick-breaking space and which has minimal integrated autocorrelation time. Thirdly, we introduce the i.i.d. transcoding algorithm which, conditional to a partition of the data, can infer back which specific stick in the stick-breaking construction each observation originated from. We use it as a building block to develop the transcoding sampler, which removes the need for label-switching Metropolis moves in the conditional stick-breaking sampler, as it uses the better performing marginal sampler (or any other sampler) to drive the MCMC chain, and augments its exchangeable partition posterior with conditional i.i.d. stick-breaking parameter inferences after the fact, thereby inheriting its shorter autocorrelation times

    Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model

    Full text link
    We consider dynamic pricing strategies in a streamed longitudinal data set-up where the objective is to maximize, over time, the cumulative profit across a large number of customer segments. We consider a dynamic probit model with the consumers' preferences as well as price sensitivity varying over time. Building on the well-known finding that consumers sharing similar characteristics act in similar ways, we consider a global shrinkage structure, which assumes that the consumers' preferences across the different segments can be well approximated by a spatial autoregressive (SAR) model. In such a streamed longitudinal set-up, we measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance. We propose a pricing policy based on penalized stochastic gradient descent (PSGD) and explicitly characterize its regret as functions of time, the temporal variability in the model parameters as well as the strength of the auto-correlation network structure spanning the varied customer segments. Our regret analysis results not only demonstrate asymptotic optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information as policies based on unshrunken models are highly sub-optimal in the aforementioned set-up.Comment: 34 pages, 5 figure

    Anuário científico da Escola Superior de Tecnologia da Saúde de Lisboa - 2021

    Get PDF
    É com grande prazer que apresentamos a mais recente edição (a 11.ª) do Anuário Científico da Escola Superior de Tecnologia da Saúde de Lisboa. Como instituição de ensino superior, temos o compromisso de promover e incentivar a pesquisa científica em todas as áreas do conhecimento que contemplam a nossa missão. Esta publicação tem como objetivo divulgar toda a produção científica desenvolvida pelos Professores, Investigadores, Estudantes e Pessoal não Docente da ESTeSL durante 2021. Este Anuário é, assim, o reflexo do trabalho árduo e dedicado da nossa comunidade, que se empenhou na produção de conteúdo científico de elevada qualidade e partilhada com a Sociedade na forma de livros, capítulos de livros, artigos publicados em revistas nacionais e internacionais, resumos de comunicações orais e pósteres, bem como resultado dos trabalhos de 1º e 2º ciclo. Com isto, o conteúdo desta publicação abrange uma ampla variedade de tópicos, desde temas mais fundamentais até estudos de aplicação prática em contextos específicos de Saúde, refletindo desta forma a pluralidade e diversidade de áreas que definem, e tornam única, a ESTeSL. Acreditamos que a investigação e pesquisa científica é um eixo fundamental para o desenvolvimento da sociedade e é por isso que incentivamos os nossos estudantes a envolverem-se em atividades de pesquisa e prática baseada na evidência desde o início dos seus estudos na ESTeSL. Esta publicação é um exemplo do sucesso desses esforços, sendo a maior de sempre, o que faz com que estejamos muito orgulhosos em partilhar os resultados e descobertas dos nossos investigadores com a comunidade científica e o público em geral. Esperamos que este Anuário inspire e motive outros estudantes, profissionais de saúde, professores e outros colaboradores a continuarem a explorar novas ideias e contribuir para o avanço da ciência e da tecnologia no corpo de conhecimento próprio das áreas que compõe a ESTeSL. Agradecemos a todos os envolvidos na produção deste anuário e desejamos uma leitura inspiradora e agradável.info:eu-repo/semantics/publishedVersio

    Diffusion Schr\"odinger Bridge Matching

    Full text link
    Solving transport problems, i.e. finding a map transporting one given distribution to another, has numerous applications in machine learning. Novel mass transport methods motivated by generative modeling have recently been proposed, e.g. Denoising Diffusion Models (DDMs) and Flow Matching Models (FMMs) implement such a transport through a Stochastic Differential Equation (SDE) or an Ordinary Differential Equation (ODE). However, while it is desirable in many applications to approximate the deterministic dynamic Optimal Transport (OT) map which admits attractive properties, DDMs and FMMs are not guaranteed to provide transports close to the OT map. In contrast, Schr\"odinger bridges (SBs) compute stochastic dynamic mappings which recover entropy-regularized versions of OT. Unfortunately, existing numerical methods approximating SBs either scale poorly with dimension or accumulate errors across iterations. In this work, we introduce Iterative Markovian Fitting, a new methodology for solving SB problems, and Diffusion Schr\"odinger Bridge Matching (DSBM), a novel numerical algorithm for computing IMF iterates. DSBM significantly improves over previous SB numerics and recovers as special/limiting cases various recent transport methods. We demonstrate the performance of DSBM on a variety of problems

    Deep Learning for Scene Flow Estimation on Point Clouds: A Survey and Prospective Trends

    Get PDF
    Aiming at obtaining structural information and 3D motion of dynamic scenes, scene flow estimation has been an interest of research in computer vision and computer graphics for a long time. It is also a fundamental task for various applications such as autonomous driving. Compared to previous methods that utilize image representations, many recent researches build upon the power of deep analysis and focus on point clouds representation to conduct 3D flow estimation. This paper comprehensively reviews the pioneering literature in scene flow estimation based on point clouds. Meanwhile, it delves into detail in learning paradigms and presents insightful comparisons between the state-of-the-art methods using deep learning for scene flow estimation. Furthermore, this paper investigates various higher-level scene understanding tasks, including object tracking, motion segmentation, etc. and concludes with an overview of foreseeable research trends for scene flow estimation

    Decoding spatial location of attended audio-visual stimulus with EEG and fNIRS

    Get PDF
    When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location in the presence of background noises and irrelevant visual objects. The ability to decode the attended spatial location would facilitate brain computer interfaces (BCI) for complex scene analysis. Here, we tested two different neuroimaging technologies and investigated their capability to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. For functional near-infrared spectroscopy (fNIRS), we targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. We found that fNIRS provides robust decoding of attended spatial locations for most participants and correlates with behavioral performance. Moreover, we found that FEF makes a large contribution to decoding performance. Surprisingly, the performance was significantly above chance level 1s after cue onset, which is well before the peak of the fNIRS response. For electroencephalography (EEG), while there are several successful EEG-based algorithms, to date, all of them focused exclusively on auditory modality where eye-related artifacts are minimized or controlled. Successful integration into a more ecological typical usage requires careful consideration for eye-related artifacts which are inevitable. We showed that fast and reliable decoding can be done with or without ocular-removal algorithm. Our results show that EEG and fNIRS are promising platforms for compact, wearable technologies that could be applied to decode attended spatial location and reveal contributions of specific brain regions during complex scene analysis
    corecore