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Abstract

Our objective is to develop formulations and al-
gorithms for efficiently computing the feature se-
lection path – i.e. the variation in classification
accuracy as the fraction of selected features is
varied from null to unity. Multiple Kernel Learn-
ing subject to lp≥1 regularization (lp-MKL) has
been demonstrated to be one of the most effective
techniques for non-linear feature selection. How-
ever, state-of-the-art lp-MKL algorithms are too
computationally expensive to be invoked thou-
sands of times to determine the entire path.

We propose a novel conjecture which states that,
for certain lp-MKL formulations, the number of
features selected in the optimal solution mono-
tonically decreases as p is decreased from an
initial value to unity. We prove the conjecture,
for a generic family of kernel target alignment
based formulations, and show that the feature
weights themselves decay (grow) monotonically
once they are below (above) a certain threshold at
optimality. This allows us to develop a path fol-
lowing algorithm that systematically generates
optimal feature sets of decreasing size. The pro-
posed algorithm sets certain feature weights di-
rectly to zero for potentially large intervals of p
thereby reducing optimization costs while simul-
taneously providing approximation guarantees.

We empirically demonstrate that our formula-
tion can lead to classification accuracies which
are as much as 10% higher on benchmark data
sets not only as compared to other lp-MKL for-
mulations and uniform kernel baselines but also
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leading feature selection methods. We further
demonstrate that our algorithm reduces training
time significantly over other path following al-
gorithms and state-of-the-art lp-MKL optimizers
such as SMO-MKL. In particular, we generate
the entire feature selection path for data sets with
a hundred thousand features in approximately
half an hour on standard hardware. Entire path
generation for such data set is well beyond the
scaling capabilities of other methods.

1. Introduction
Feature selection is an important problem in machine learn-
ing motivated by considerations of elimination of noisy,
expensive and redundant features, model compression for
learning and predicting on a budget, model interpretability,
etc. In many real world applications, one needs to deter-
mine the entire feature selection path, i.e. the variation in
prediction accuracy as the fraction of selected features is
varied from null to unity, so as to determine the most fea-
sible operating point on the path in the context of the given
application.

There has been much recent progress in non-linear fea-
ture selection (Li et al., 2006; Bach, 2008; Hwang et al.,
2011; Song et al., 2012) where the predictor is a non-linear
function of the input features. Most algorithms have a pa-
rameter influencing the number of selected features and
one would need to try thousands of parameter settings to
generate the entire feature selection path. This is a chal-
lenge since state-of-the-art non-linear feature selection al-
gorithms remain computationally expensive and training
them thousands of times can be prohibitive (even with
warm restarts).

In particular, Multiple Kernel Learning (MKL) techniques
have been shown to be amongst the most effective for non-
linear feature selection (Ji et al., 2008; Chen et al., 2008;
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Varma & Babu, 2009; Vedaldi et al., 2009; Levinboim &
Sha, 2012; Hwang et al., 2012). They have been demon-
strated to be superior to a number of linear and non-linear
filter and wrapper methods (Varma & Babu, 2009). MKL
feature selection techniques were also used to reduce pre-
diction time in the joint winning entry of the competi-
tive PASCAL VOC 2009 object detection in images chal-
lenge (Vedaldi et al., 2009). However, even though many
specialized MKL optimization techniques have been de-
veloped (Kloft et al., 2011; Vishwanathan et al., 2010;
Orabona & Jie, 2011; Orabona et al., 2012; Jain et al.,
2012), training them thousands of times with different pa-
rameter settings is often infeasible.

Our objective, in this paper, is to develop MKL formula-
tions and algorithms for efficiently determining the non-
linear feature selection path. Our starting point is a novel
conjecture that, for certain MKL formulations subject to
lp≥1 regularization, the number of features (kernels) se-
lected in the optimal solution monotonically decreases as
p is decreased from an initial value to unity. We first prove
that the conjecture is true for a generic family of Kernel
Target Alignment (KTA) based lp-MKL formulations. This
implies that regulating p, in the formulations of this family,
provides a principled way of generating the feature selec-
tion path (see Fig 1(a), 1(b)). In fact, for this family, we
further strengthen the conjecture and prove that the fea-
ture weights themselves decay (grow) monotonically once
they are below (above) a certain threshold at optimality (see
Fig 1(c)-1(e)). This implies that there exist juncture points
along the path and an algorithm can exploit these by elimi-
nating certain features from the optimization for potentially
large intervals of p. It should be noted that these conjec-
tures are non-trivial and we show that they do not hold for
the popular square loss based lp-MKL formulation.

Based on these results, we propose a Generalized lp-KTA
formulation which extends the KTA formulations of (Cris-
tianini et al., 2001; Lanckriet et al., 2004; Cortes et al.,
2012). The proposed formulation is strongly convex and
leads to robust feature selection (Bousquet & Elisseeff,
2002; Zou & Hastie, 2005; Kivinen et al., 2006). Fur-
thermore, the feature monotonicity results allow us to de-
velop a predictor-corrector based path following algorithm
for Generalized lp-KTA that exploits the presence of junc-
ture points for increased efficiency.

We perform extensive experiments to demonstrate that the
proposed Generalized lp-KTA formulation can lead to clas-
sification accuracies which are as much as 10% higher on
benchmark data sets not only as compared to other lp-MKL
formulations and uniform kernel baselines but also lead-
ing feature selection methods. We further demonstrate that
our algorithm reduces training time significantly over other
path following algorithms and state-of-the-art lp-MKL op-

timizers such as SMO-MKL. In particular, we generate the
entire feature selection path for data sets with a hundred
thousand features in approximately half an hour on stan-
dard hardware. Entire path generation for such data set is
well beyond the scaling capabilities of other methods.

Our contributions are as follows: (a) we propose, and
prove, a novel conjecture regarding the monotonicity of se-
lected features, and feature weights themselves, for certain
lp regularized MKL formulations; (b) we propose a Gen-
eralized lp-KTA formulation for robust non-linear feature
selection that is capable of achieving significantly higher
classification accuracies as compared to state-of-the-art;
and (c) our algorithm is many times faster than other lead-
ing techniques.

2. Related Work
Considerable progress has been made in the area of non-
linear feature selection. A popular approach is to map
the input features to a kernel-induced feature space while
simultaneously performing feature selection in the origi-
nal input space. For example, (Li et al., 2006) propose
to perform LASSO regression in the induced space and
thereby perform non-linear feature selection while (Weston
et al., 2000; Grandvalet & Canu, 2002) pose this problem as
that of tuning the hyper-parameters of the kernel. Another
promising direction is to find un-correlated or independent
features in the kernel induced feature space. While (Wu
et al., 2005; Cao et al., 2007) aim at selecting orthogo-
nal features in the feature space, (Chen et al., 2008; Song
et al., 2012) employ Hilbert-Schmidt Independence Crite-
rion based measures. Most of these approaches are either
computationally expensive or resort to approximately min-
imizing their non-convex objectives.

Multiple Kernel Learning based techniques for non-
linear feature selection have been explored in settings
such as multi-label classification (Ji et al., 2008), bio-
informatics (Chen et al., 2008; Levinboim & Sha, 2012)
and object categorization (Vedaldi et al., 2009; Hwang
et al., 2012). In (Varma & Babu, 2009), MKL tech-
niques for non-linear feature selection were shown to be
better than boosting (Baluja & Rowley, 2007), lasso (An-
drew & Gao, 2007), sparse SVM (Chan et al., 2007), LP-
SVM (Fung & Mangasarian, 2002) and BAHSIC (Song
et al., 2012). Various MKL formulations have been de-
veloped including lp≥1-norm regularization over the ker-
nel weights (Lanckriet et al., 2004; Rakotomamonjy et al.,
2008; Cortes et al., 2009a; Kloft et al., 2011; Orabona &
Jie, 2011; Orabona et al., 2012), mixed-norm regulariz-
ers (Aflalo et al., 2011), non-linear combinations of base
kernels (Cortes et al., 2009b; Varma & Babu, 2009), Breg-
man divergence based regularizers (Vishwanathan et al.,
2010) and for regularized kernel discriminant analysis (Ye
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Figure 1: (a) The feature selection path for the proposed Generalized lp-KTA formulation. Note that generating the entire
path for the largest data set (Dorothea) is well beyond the scaling capabilities of all existing algorithms while our proposed
algorithm generated the path in only half an hour on standard hardware; (b) plot validating our weak Generalized lp-KTA
monotonicity conjecture that the number of selected features decreases monotonically with p; (c) & (d) plots validating our
strong Generalized lp-KTA monotonicity conjecture that feature (kernel) weights themselves vary monotonically beyond
juncture points but vary non-monotonically in between (e). Figure best viewed in color under magnification.

et al., 2008). State-of-the-art lp≥1-MKL optimization tech-
niques such as SMO-MKL (Vishwanathan et al., 2010) and
SPG-GMKL (Jain et al., 2012) have been shown to scale to
a million kernels. Nevertheless, these techniques take more
than a day to train on a standard desktop and so computing
them thousands of times for determining the entire feature
selection path is infeasible.

Path following over the regularization parameter has been
studied in the context of both non-sparse regulariza-
tion (Hastie et al., 2004) as well as sparse linear clas-
sifiers (Zhu et al., 2003). Some of the other settings
where path following has been studied are: l1-MKL (Bach
et al., 2004), general non-linear regularization paths (Ros-
set, 2004), boosting (Zhao & Yu, 2007) and l1 regularized
feature selection (Li & Sminchisescu, 2010). Tracing the
solution path for other hyper-parameters has also been ex-
plored. While (Gunter & Zhu, 2005; Wang et al., 2006)
perform path following over the tube width parameter in
support vector regression, (Wang et al., 2007) follow the
path for the kernel hyper-parameter in SVMs.

To the best of our knowledge, p-norm path following has
not been studied in the literature so far. The closest com-
peting technique to ours is the path following l1-MKL ap-
proach of (Bach et al., 2004) and we present comparative
results in Section 6.

3. Generalized lp-KTA
To perform non-linear feature selection, we associate a
non-linear base kernel with each individual feature, such
as RBF kernels defined per feature, and then learn a sparse
combination of base kernels. We introduce our General-
ized lp-KTA formulation for sparse kernel learning using
the following notation.

Let k1, . . . , kr denote the given base kernel functions (one
per feature) and let K1, . . . ,Kr denote the correspond-

ing centered gram matrices obtained from the training
data so that the features induced in the RKHS have zero
mean (Cortes et al., 2012). Let y denote the vector with
entries as the labels of the training data. We are interested
in learning a kernel, k, that is a conic combination of the
given base kernels, i.e. k =

∑r
i=1 ηiki, ηi ≥ 0 ∀ i. We fo-

cus on the following family of Bregman divergence based
lp-KTA formulations for learning the kernel weights η.

Let F be a strictly convex and differentiable function and
let ∇F denote its gradient. Then, the Bregman divergence
generated by the function F is given by BF (x) = F (x)−
F (x0) − (x − x0)>∇F (x0), where x0 is some fixed and
given point in the domain of F . As an example, F (x) =
〈x, x〉 leads to BF (x) = ‖x− x0‖2, the squared Euclidean
distance. The proposed Generalized lp-KTA formulations
have the following form:

min
η≥0

λ1B̄F (η) + λ2

r∑
i=1

ηpi −
r∑
i=1

ηiy
>Kiy, (1)

where the first term representing the Bregman diver-
gence based regularizer is decomposable as B̄F (η) =∑
iBF (ηi), the second term is the sparsity inducing lp

regularizer and the third term captures the alignment of
the learnt kernel to the ideal kernel yy>. Note that p ≥
1, λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters.

A large number of popular Bregman divergences such as
the squared Euclidean distance, generalized KL-divergence
etc. are decomposable (Banerjee et al., 2005) and hence ad-
missible under the Generalized lp-KTA formulation. Such
Bregman divergences are known to promote robust feature
and kernel selection (Bousquet & Elisseeff, 2002; Zou &
Hastie, 2005; Kivinen et al., 2006) while the lp-norm regu-
larizer achieves variable sparsity (Kloft et al., 2011). Note
that the classical KTA formulations studied in (Lanckriet
et al., 2004; Cristianini et al., 2001) can be obtained as spe-
cial cases of our formulation by taking F to be the squared
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Euclidean distance and having λ2 = 0. On the other hand,
substituting λ1 = 0 results in the KTA formulation stud-
ied in Proposition (7) in (Cortes et al., 2012). The normal-
ized KTA formulation in Proposition (9) in (Cortes et al.,
2012) employs a non-decomposable Bregman divergence
and hence is not a special case of (1). However we em-
pirically demonstrate in Section 6 that the proposed Gen-
eralized lp-KTA formulation outperforms this normalized
KTA formulation both in terms of generalization accuracy
as well as computational cost. In particular, the normalized
KTA formulation needs to operate on an r × r dense ma-
trix which becomes infeasible for large r (r = 105 for the
standard Dorothea feature selection data set).

The final classification results are obtained by training an
SVM using the learnt kernel k =

∑r
i=1 ηiki. This cor-

responds to non-linear feature selection since features for
which ηi is zero do not contribute to the kernel and can be
dropped from the data set.

We conclude this section with the following observation.
Though (1) optimizes the kernel weights independently for
a given λ1 and λ2, the proposed algorithm employs cross-
validation for optimizing λ2. Hence, the final optimal ker-
nel weights need not be independent.

4. Monotonic Feature & Kernel Selection
Path Following

In this section, we prove the monotonicity conjecture for
the proposed Generalized lp-KTA formulation. Let η∗i (p′)
denote the optimal weight of the kernel ki obtained with
(1) at p = p′ and let K(p′) denote the set of kernels active
at p = p′. A kernel ki is said to be active at p = p′, i.e.
ki ∈ K(p′). if and only if η∗i (p′) > ε, where ε > 0 is a
user-defined tolerance. The proposed conjecture can now
be formally stated as

kj /∈ K(p′)⇒ kj /∈ K(p) ∀ 1 < p < p′ (2)

We begin our analysis by noting the following theorem:

Theorem 1. The path of the optimal solutions of (1) with
respect to p, i.e. η∗(p), is unique, smooth (provided F is
twice-differentiable) and, in general, non-linear.

Proof The optimal solution path of (1), i.e. η∗(p), is unique
since the objective of (1) is strictly convex. In order to
prove the smoothness of the optimal solution path, we be-
gin by deriving the necessary and sufficient conditions of
optimality for (1). To this end, we first define

g(ηi) = λ1B̄F (ηi) + λ2η
p
i − ηiy

>Kiy

Next, we consider two cases:

Case 1: η∗i = 0 for a given p: The necessary and suffi-
cient conditions of optimality for a convex function is that

the gradient of the function at optimality, g′(η∗i ), should
lie in the normal cone of the feasibility set (Ben-Tal & Ne-
mirovski, 2001). This results in the following inequality:

λ1(F ′(0)− F ′(η0i ))− y>Kiy ≥ 0 (3)

Since F is a convex function, we have F (ηi) ≥ F (η0i ) +
F ′(η0i )(ηi − η0i ) as well as F (η0i ) ≥ F (ηi) + F ′(ηi)(η

0
i −

ηi). Summing these two inequalities, we get 0 ≥ (F ′(ηi)−
F ′(η0i ))(η0i − ηi). Now substituting ηi = 0, we get 0 ≥
η0i (F ′(0) − F ′(η0i )). Since η0i ≥ 0 (feasible set of ηi is
≥ 0), it follows 0 ≥ F ′(0)−F ′(η0i ). Hence, in the LHS of
(3), (F ′(0) − F ′(η0i )) ≤ 0 and −y>Kiy ≤ 0. It follows
that the optimality conditions for η∗i = 0 are

F ′(0)− F ′(η0i ) = 0 and y>Kiy = 0 (4)

Note that both the above equalities are independent of p.
It follows that if ∃ p′ > 1 s.t. η∗i (p′) = 0 then η∗i (p) =
0 ∀ p > 1. Thus, the optimal solution path, η∗i (p), is
smooth, in fact linear, when ∃ p′ > 1 s.t. η∗i (p′) = 0.

Case 2: η∗i > 0 for a given p: In this case, the neces-
sary and sufficient conditions of optimality (Ben-Tal & Ne-
mirovski, 2001) simplifies to g′(η∗i ) = 0. Thus we get the
following optimality condition

Gi(ηi, p) ≡λ1(F ′(ηi)− F ′(η0i )) + λ2pη
p−1
i

− y>Kiy = 0 (5)

In the following, we prove that the path of the optimal
solution, η∗i (p), of (5) is smooth for the non trivial case:
η∗i (p) > 0 ∀ p > 1.

Since the pair (η∗i (p), p) always satisfy the equality in
(5), we must have that dGi(η

∗
i (p), p) ≡

∑
j
∂Gi

∂ηj
dηj +

∂Gi

∂p dp = 0 ∀ p > 1. This leads to

dη∗i (p)

dp
=

−λ2η∗i (p)p−1(1 + p ln η∗i (p))

λ1F ′′(η∗i (p)) + λ2p(p− 1)η∗i (p)p−2
(6)

The terms ln η∗i (p) and η∗i (p)p−2 are always finite as
η∗i (p) > 0 and the denominator of (6) is always non-
zero, in fact positive, because for any convex, twice-
differentiable F we have: F ′′(η∗i (p)) ≥ 0. Hence, the
derivative along the optimal solution path (6) is well de-
fined and itself a continuous function; proving that the op-
timal solution path is smooth (but generally non-linear) in
this case too. �

The next theorem states the key result that proves the
monotonicity conjecture for the proposed Generalized lp
KTA formulation.

Theorem 2. Given η∗i (p′), the following holds as p de-
creases from p′ to unity: (1) η∗i (p) decreases monotonically
whenever η∗i (p′) < e−1; (2) η∗i (p) increases monotonically
whenever η∗i (p′) > e

− 1
p′
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Proof. The monotonic behavior of η∗i (p) follows from ob-
serving the sign of (6) and from the fact that e−

1
p is a mono-

tonically increasing function of p. Note that the denomina-
tor of (6) is positive. �

Theorem 2 implies that the monotonicity conjecture for the
Generalized lp-KTA formulation in (1) holds whenever the
user defined tolerance parameter ε (above which a kernel is
said to be active) is set to be less than e−1. Points wherever
an optimal kernel weight becomes less than the threshold
are referred to as juncture points. Note that Theorems 1,2
and the monotonicity conjecture are non-trivial as they do
not hold for all loss functions. In particular, we analyze
lp-MKL formulations with the popular square loss in Ap-
pendix A, and present settings where the conjecture does
not hold. This implies that path following algorithms for
such formulations can not be speeded up by eliminating
features whose weights touch zero from the optimization
since they can increase to become non-zero at a later stage
(see Fig 2).

5. Efficient Path Following Algorithm
In this section, we present an efficient path following al-
gorithm which closely approximates the true feature selec-
tion path. The algorithm exploits the presence of juncture
points to improve upon the standard Predictor-Corrector
(PC) technique and scales effortlessly to optimization prob-
lems involving a hundred thousand features. Finally, we
give a bound on the deviation from the optimal objective
function value caused due to the approximation.

Theorem 1 states that the solution path of (1) is smooth
but non-linear in general. Path following is typically
implemented using the standard Predictor-Corrector algo-
rithm (Allgower & Georg, 1993) in such cases (Bach et al.,
2004; Rosset, 2004). The PC algorithm is initialized with
the optimal solution at p = p0. At every iteration, the cur-
rent value of p is decreased by a small step size, ∆p and the
following key iterative steps are performed:
Predictor: The predictor is a close approximation of
η∗i (p−∆p) given η∗i (p). This can either be the warm start
approximation, i.e. η∗i (p−∆p) = η∗i (p), the first order ap-
proximation, η∗i (p−∆p) = η∗i (p)−∆p

dη∗i (p)
dp or the second

order approximation η∗i (p − ∆p) = η∗i (p) − ∆p
dη∗i (p)

dp +

1
2 (∆p)

2 d2η∗i (p)
dp2 (the derivative expressions for our case are

provided in the supplementary material).
Corrector: The Newton method is used to correct the ap-
proximations of the predictor step leading to a quadratic
convergence rate (Allgower & Georg, 1993).

We modify the standard PC algorithm so as to closely ap-
proximate the solution path at a lower computational cost.
The key idea is to exploit the monotonicity in the active

Algorithm 1 Generic Algorithm for Computing Solution Path
of the Kernel Weights

Input: y>K1y, . . . ,y
>Kry, step size ∆p(> 0), tolerance

ε(> 0), start and end p values: p0 and pe respectively with
p0 > pe.
Output: η∗(p) for all p at ∆ intervals between [pe, p0]
Initialization: p = p0, Index set of active kernels K =
{1, . . . , r}
Solve (1) at p = p0 to obtain the optimal solution η∗(p0)
if (η∗i (p0)) < ε for any i ∈ K then

Set η∗i (p0) = 0
Update K = K \ {i}

end if
repeat

Update p = p−∆p
Set η∗i (p) = 0 for all i /∈ K
for i ∈ K do

Predictor: Initialize η∗i (p) using warm start or first or
second order approximation
Corrector: Run Newton’s method to obtain η∗i (p)

end for
if (η∗i (p)) < ε for any i ∈ K then

Set η∗i (p) = 0
Update K = K \ {i}

end if
until p ≤ pe

set size and directly set certain kernel weights to zero for
all the subsequent p values. Algorithm 1 summarizes the
proposed algorithm. The algorithm maintains an active-set
that is initialized to those kernels whose optimal weight at
p0 is above ε. At every iteration, the first order PC step is
used to determine the kernel weights for the next p value.
Kernels whose weight falls below ε are eliminated from
the active set for the remainder of the optimization due to
the monotonicity property. The error incurred by the pro-
posed method can be bounded in terms of ε. The following
Lemma holds when the squared Euclidean distance is used
as the Bregman divergence:

Lemma 1. For any p, the deviation in the objective value
of (1) obtained using the approximate path following algo-
rithm from the true optimal objective is upper bounded by
r(λ1ε

2 + λ2(p− 1)εp).

This result follows from the optimality conditions (5) and
Theorem 2. We also state an analogous lemma for the gen-
eralized KL-divergence in the supplementary material.

Table 1: Data set statistics

Data set Num Dim Data set Num Dim
Arcene 100 10000 Madelon 2000 500
Relathe 1427 4322 Pcmac 1943 3289
Basehock 1993 4862 Dorothea 800 100000
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Table 2: The maximum classification accuracy achieved (with the corresponding number of selected features) along the
feature selection path. Generalized lp-KTA achieves significantly higher accuracies as compared to state-of-the-art KTA
and lp≥1-MKL formulations as well as leading feature selection techniques such as BAHSIC. The table reports mean
results averaged over 5-fold cross validation (see the supplementary material for standard deviations). ‘-’ denote results
where the data set was too large for the feature selection algorithm to generate results.

Arcene Madelon Relathe Pcmac Basehock Dorothea
Gen lp-KTA 92.00 (3788) 65.70 (12) 92.57 (3644) 93.62 (2947) 98.59 (4262) 94.75 (20220)
Centered-KTA 75.00 (134) 62.45 (290) 90.40 (542) 93.05 (498) 97.29 (584) -
SMO-MKL 82.00 (9999) 62.05 (1) - - - -
BAHSIC 69.00 (100) 53.90 (50) 85.07 (500) 89.55 (500) 93.58 (500) 90.63 (500)
PF-l1-MKL 81.00 (87) 62.76 (89) 85.67 (287) - - -
PF-l1-SVM 77.00 (273) 61.25 (7) 89.00 (510) 90.68 (190) 97.24 (264) 93.88 (499)
Uniform 81.00 (10000) 59.85 (500) 90.96 (4322) 92.49 (3289) 97.99 (4862) 91.38 (100000)

Table 3: The maximum classification accuracy achieved on the ASU data sets (with the corresponding number of selected
features) along the feature selection path. In keeping with the ASU experimental protocol, all algorithms are restricted to
selecting at most 200 features and are allowed to train on only half the data. Generalized lp-KTA (RBF) outperforms all
the linear techniques and this demonstrates the advantages of non-linear feature selection. Amongst the linear methods,
our proposed method with linear features is the best in general.

Arcene Madelon Relathe Pcmac Basehock Dorothea
Gen lp-KTA (RBF) 76.80 (124) 64.50 (14) 89.40 (183) 89.76 (196) 95.46 (184) 93.75 (17)
Gen lp-KTA (Linear) 73.40 (16) 62.04 (12) 88.39 (190) 88.88 (180) 94.76 (189) 93.60 (12)
Inf. Gain 72.00 (110) 61.63 (5) 84.39 (190) 88.99 (135) 95.26 (200) 93.33 (35)
Chi-Square 71.20 (120) 61.69 (10) 83.48 (180) 88.24 (155) 95.28 (160) 93.33 (20)
Fisher Score 66.20 (65) 61.47 (10) 83.35 (180) 88.02 (100) 94.61 (200) 93.30 (20)
mRMR 68.20 (60) 61.87 (5) 75.01 (60) 83.34 (145) 88.88 (70) 93.18 (155)
ReliefF 68.40 (170) 62.06 (15) 77.08 (200) 80.76 (200) 86.05 (200) 93.33 (105)
Spectrum 64.00 (195) 60.19 (25) 69.99 (175) 66.74 (185) 69.79 (200) 90.28 (140)
Gini Index 64.60 (185) 59.43 (25) 69.50 (180) 66.60 (185) 69.49 (200) 90.28 (140)
K.-Wallis 60.20 (95) 55.04 (65) 70.97 (200) 65.20 (200) 70.37 (200) 90.08 (65)

6. Experiments
We carry out experiments to determine both the classifica-
tion accuracy as well as the training time of the proposed
Generalized lp-KTA over the feature selection path.

Data sets & kernels: We present results on a variety of fea-
ture selection data sets taken from the NIPS 2003 Feature
Selection Challenge (Guyon et al., 2006) and the ASU Fea-
ture Selection Repository (Zhao et al., 2010). Table 2 lists
the number of instances and features in each data set. Un-
less otherwise stated, results are averaged via 5-fold cross-
validation (standard deviations are reported in the supple-
mentary material for lack of space). We define an RBF
kernel per feature as our base kernels and center and trace
normalize them as recommended in (Cortes et al., 2012).

Baseline techniques: We compare the proposed approach
to a number of baseline techniques including state-of-the-
art Centered KTA formulation (Cortes et al., 2012), highly
optimized lp-MKL techniques such as SMO-MKL (Vish-
wanathan et al., 2010), leading feature selection methods
such as BAHSIC (Song et al., 2012) as well as path fol-
lowing approaches for l1-MKL (PF-l1-MKL) (Bach et al.,
2004). While evaluating classification accuracy we also

compare to the uniform kernel combination baseline (ηi =
1/r ∀ i) referred to as Uniform as well as path follow-
ing linear feature selection approaches (PF-l1-SVM) (Zhu
et al., 2003). On the ASU data sets we also compare our
classification accuracy to 8 other state-of-the-art feature se-
lection techniques whose details are given in Zhao et al.
(2010). The final classification results for all the feature
selection algorithms are obtained using an SVM with the
kernel computed as k =

∑r
i=1 ηiki, where (ηi)i=1,...,r are

the feature weights provided by the algorithm. While eval-
uating computational cost, we also compare the cost of our
proposed approximate first order predictor-corrector algo-
rithm to the exact path following algorithm.

Parameter settings: For the Generalized lp-KTA formula-
tion we set λ1, λ2 and the SVM misclassification penalty
C by 5-fold cross-validation while varying p from 2 to 1 in
decrements of 0.01. We use the squared Euclidean distance
as the Bregman divergence with x0 = 0. BAHSIC, PF-
l1-MKL and PF-l1-SVM are parameter free when comput-
ing the feature selection path. The parameters of the other
techniques were also set via extensive cross-validation ex-
cept for the computationally intensive SMO-MKL where
this was feasible only for the smaller data sets. On the
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Table 4: Average training time (in seconds) required to compute a point along the feature selection path. Note that each
algorithm generates a different number of points along the path. Therefore, for a fair comparison, we report the total time
taken to compute the path for each algorithm divided by the number of points generated by the algorithm. Generalized lp-
KTA formulation is orders of magnitude faster than competing techniques and is the only algorithm which can generate the
entire path for the Dorothea data set. ‘-’ denote results where the data set was too large for the feature selection algorithm
to generate results.

Arcene Madelon Relathe Pcmac Basehock Dorothea
Gen lp-KTA 0.3 2.4 2.4 3.7 4.8 12.5
Centered-KTA 10.9 2405.5 2093.8 1099.6 3302.6 -
SMO-MKL 5.7 168.4 - - - -
BAHSIC 116.2 2265.8 3764.2 5906 7847.1 10976.3
PF-l1-MKL 29.5 83.1 240.0 - - -

larger data sets, we follow the SMO-MKL’s authors’ ex-
perimental protocol and fix λ = 1 and validate over C with
p ∈ {1.01, 1.33, 1.66, 2}. As in the case of previous lp-
MKL algorithms (Vishwanathan et al., 2010; Orabona &
Jie, 2011; Orabona et al., 2012; Jain et al., 2012), we em-
ploy the common strategy of thresholding to obtain sparse
solutions for the proposed Generalized lp-KTA.

Results: Table 2 lists the maximum classification accuracy
achieved along the entire feature selection path and the cor-
responding number of selected features (i.e. corresponding
to the best oracle results on the test set). Our proposed
Generalized lp-KTA formulation gets significantly higher
classification accuracies than all competing methods. For
instance, on Arcene data set, Generalized lp-KTA achieves
a classification accuracy which is 11% higher than the clos-
est competing method. Table 3 presents results on the ASU
data sets following the ASU experimental protocol where
only 50% of the data is used for training and the number of
selected features is restricted to be less than 200. This tests
the capabilities of feature selection algorithms under the
demanding conditions of both limited training data and lim-
ited prediction budget. As can be seen, Gen lp-KTA (RBF)
clearly outperforms all the linear methods thereby demon-
strating the power of non-linear feature selection which is
the focus of our paper. Amongst all the linear feature selec-
tion methods, our proposed Gen lp-KTA (Linear) is the best
in general. It is the best method on 3 data sets – on Relathe
it is better than the second best method by 4%, on Arcene
by 1.4% and on Dorothea by 0.27%. On 2 data sets it is the
second best method – lagging behind the best method on
Madelon by 0.02% and on Pcmac by 0.11%. These results
demonstrate that the Generalized lp-KTA formulation can
lead to better results not only as compared to other KTA
and lp-MKL formulations but also as compared to leading
feature selection techniques.

Table 4 assesses the cost of computing the feature selec-
tion path. Note that algorithms such as BAHSIC compute
the path a feature at a time while other algorithms, such
PF-l1-MKL, have a much sparser sampling of the path (in

the limit Centered KTA produces only a single point on the
path). Therefore, for a fair comparison, we report the to-
tal time taken by each algorithm divided by the number of
points generated by it along the path. This measures the
average time taken by each algorithm to generate a point
along the path. Table 4 shows that the proposed approx-
imate first order predictor-corrector algorithm can be 16
to 878 times faster than competing techniques. Further-
more, on the largest data set, Dorothea with 105 features,
Centered-KTA, SMO-MKL and PF-l1-MKL were not able
to generate even a single point on the path whereas our al-
gorithm was able to generate the entire path in 21 minutes
using pre-computed kernels and 36 minutes using kernels
computed on the fly. BAHSIC generates the path by adding
a single feature at each iteration and was able to generate
the initial path segment up to 500 features but at a high
computational cost of more than 3 hours. All experiments
were carried out on a standard 2.40 GHz Intel Xeon desk-
top with 32 GB of RAM. Finally, we note that our approx-
imate path following algorithm was also found to be faster
than the exact path following algorithm implemented with
first order predictor or with warm restarts without exploit-
ing juncture points and eliminating features from the opti-
mization. The speedups against both the baselines varied
with more than 3 times on Madelon and almost 4 times on
Dorothea while the maximum relative deviation from the
exact path was only 7.3×10−6 and 3.6×10−4 respectively.
Figure 1(a) shows the feature selection path as computed by
our approximate algorithm on all the data sets.

7. Conclusions
We developed an efficient p-norm path following algorithm
for non-linear feature selection in this paper. Our starting
point was a novel conjecture that the number of selected
features, and the feature weights themselves, vary mono-
tonically with p in lp-MKL formulations. We proposed a
Generalized lp-KTA formulation and proved that the con-
jecture holds for this formulation but not for other popular
formulations such as the square loss based lp-MKL. The
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monotonicity property of the Generalized lp-KTA formu-
lation allows us to eliminate features whose weight goes
below a certain threshold from the optimization for large
intervals of p leading to efficient path following. It was the-
oretically and empirically demonstrated that this resulted
in only a minor deviation from the exact path. Experiments
also revealed that our proposed formulation could yield sig-
nificantly higher classification accuracies as compared to
state-of-the-art MKL and feature selection methods (by as
much as 11% in some cases) and be many times faster than
them. All in all, we were able to effortlessly compute the
entire path for problems involving a hundred thousand fea-
tures which are well beyond the scaling capabilities of ex-
isting path following techniques.
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A. Analysis of lp-MKL with Square Loss
In this section, we analyze the proposed conjecture in the
context of the lp-MKL formulation for the ridge regres-
sion (Cortes et al., 2009a):

min
η≥0

max
α∈Rm

y>α− 1

2
α>Qηα+ λ2

r∑
i=1

ηpi (7)

whereQη =
∑
i ηiKi+

I
2λ1

, I is them×m identity matrix
and λ1, λ2 > 0 are the regularization parameters. Firstly,
we consider a setting employed in (Lanckriet et al., 2004;
Cristianini et al., 2001; 2000), which leads to the selec-
tion of a low-dimensional subspace: unit rank base kernels
Ki = uiu

>
i s.t. trace(Ki) = 1 and 〈Ki,Kj〉 = 0 ∀ i 6= j.

The following theorem holds in this setting:

Theorem 3. Let η∗i (p) denote the optimal weight corre-
sponding to the i-th kernel in (7) at p. Given η∗i (p′), the fol-
lowing holds as p decreases from p′ to unity: (1) η∗i (p) de-
creases monotonically whenever η∗i (p′) < e−1; (2) η∗i (p)

increases monotonically whenever η∗i (p′) > e
− 1

p′

The proof involves deriving and analyzing the dη∗(p)/dp
term and is provided in the supplementary material.

Needless to say, the above theorem implies that the conjec-
ture is true for the case mentioned above. We now present
an interesting example where the conjecture does not hold
with ε = 0:

Theorem 4. Consider the regression formulation in (7)
with two given base kernels of unit rank and unit trace:
k1 and k2. Additionally, let y>K2K1y > y>K1y > 0.
Then for some λ1, λ2, ∃ p′ > 1 such that η1 = 0 if and only
if p = p′.

The proof involves deriving and analyzing the necessary
conditions for the optimal value of a kernel weight in (7) to
be zero and is detailed in the supplementary material.

The above theorem shows a case in which the kernel
weight, after attaining the lowest feasible value (zero), at
p = p′, grows as p further decreases from p′. Figure 2
shows an instance from a real world data set (Parkinson
disease data set from the UCI Repository) where the opti-
mal kernel weight in (7) grows after attaining zero. We can
observe that at around p = 1.5, the optimal kernel weight
corresponding to Feature 1 is zero, and it again starts grow-
ing as p is further decreased. This observation show that the
conjecture is not universally true for low values of ε. How-
ever, in the same setting as in Theorem 4, the conjecture
may be true for some other ε > 0. The proposed algorithm
is usable whenever such an ε is small1.
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Figure 2: η∗1 decrease as p is decreased from 2, attains zero at
around p = 1.5 and again grows as p decreases further. This
example proves that the monotonicity conjecture does not univer-
sally hold for (7) when ε = 0.

In summary, the proposed conjecture is itself non-trivial
and requires careful analysis for different lp-MKL formu-
lations. Interestingly, in case of the proposed Generalized
lp-KTA, it holds for small enough tolerance, ε < e−1.
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